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Numerical Methods for Determining Principal 
Component Analysis Abstract Factors 

Béchu, S., Richard-Plouet, M., Fernandez, V., Walton, J., and Fairley, N. (2016) Developments in 

numerical treatments for large data sets of XPS images. Surf. Interface Anal., doi: 10.1002/sia.5970. 

Two complementary methods for computing abstract factors are discussed. These two methods 

have a common theme of generating eigenvectors and abstract factors one at a time, thus allowing a 

specific number of abstract factors to be computed rather than being limited to computing all 

abstract factors for a given problem. Determination of only a limited number of abstract factors 

represents a significant reduction in the time required to separate signal from noise in a set of data 

vectors. 

Nonlinear Iterative Partial Least Squares Method 

Introduction 
Nonlinear Iterative Partial Least Squares (NIPALS) is a technique for computing eigenvectors and 

eigenvalues of matrices. Eigenvector computation is the basis for many numerical procedures, not 

least for providing understandable solutions for ill conditioned systems of equations.  

One means of producing an ill-conditioned set of equations is attempting a linear least squares 

approximation but selecting basis vectors which are only marginally different in direction cosines. 

While theoretically a solution is possible, finite precision and floating point arithmetic can result in a 

failure to generate the theoretical inverse required for the solution. A means of obtaining a 

numerical solution to such problems is to identify the source of the numerical problem and remove 

the problematic element of the computation process in the hopes of yielding that which is still useful 

from the problem as initially formulated. One might argue it would be best to reformulate the least 

squares problem as initially defined to allow an inverse to be obtained, but understanding what 

went wrong numerically is useful in reformulating the least squares problem so a solution is 

possible. Eigenanalysis is therefore more than a means of obtaining an answer but also assists in 

understanding the problem at hand. 

The objective of the following sections is to support an understanding for the general statements 

made in this introductory section. The least squares discussion in the following section provides 

details and examples which develop ideas aimed at enhancing an understanding for these general 

points. 

Linear Least Squares Approximation 
Given a set of linearly independent functions  a function can 

be defined by 

 

where  are constant values. 
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Example: 

 

Figure 1: A decomposition for a C 1s spectrum into three components. These components are typically spectra measured 
from standard materials. 

In this well-posed example the functions  are component curves differing in 

position, defined by peak maximum, and shape. The weighted sum representing a linear least 

squares solution of these lineshapes  approximates a C 1s data envelope.  

When using Equation (1) to model a spectrum, the function  must reproduce the data envelope 

as closely as possible. The concept expressed by the term closely has mathematical meaning as 

follows. The conventional and common measure of closeness is the least squares criterion 

 

is a minimum, where  are  data channels in which signal is collected representing 

the spectrum of intensity as a function of binding energy (Figure 2). 

 

Figure 2: Intensities allocated to energy bins yielding a spectrum which can be logically thought of as a vector with 
coordinate values corresponding to variation in signal binned by binding energy. The dimension for the vector is equal to 
the number of data bins. 

Minimising the function  with respect to the parameters  is 

achieved by requiring 

 

Since 
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If we use vector notation  and  then, 

using dot product notation for vector scalar multiplication, the condition for minimising the function 

, namely 

 

which results in the function  approximating the data  in a least squares sense 

reduces to a system of linear equations in  unknowns 

 

If a matrix  is defined in terms of the vectors  

 

Then the set of simultaneous equations written in matrix notation become 

 

where  The least squares problem has a theoretical solution, provided the 

inverse matrix  exists, in the form 

 

The set of simultaneous equations (3) provide a geometric interpretation for the linear least squares 

solution . Each equation is of the form 
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or 

 

 

 

That is, the least squares solution creates a vector  such that the 

difference between the least squares solution and the data vector is orthogonal to each of the 

vectors . A least squares problem involving two functions  use to 

approximate a data vector can be visualised as a projection of the data vector onto the plane 

defined by . 

 

While the matrix equation (4) offers a theoretical solution in practice the symmetric matrix  may 

not be well behaved in the sense that the inverse is difficult to determine from a numerical 

perspective. The problem occurs when the functions selected for the least squares approximation 

turn out to be almost the same as others in the function set chosen to describe the data. Such a 

statement is not always as clear cut as it might sound. For example, the two polynomials  may 

look different, yet if these represent intensities measured at three point equivalent to 

 and  the corresponding matrix is , that is two identical vectors yielding 

. The polynomials  and , for the chosen step size and number of steps, turn out to 

be linearly dependent functions. If as an alternative the polynomials  are chosen for the 

same number of and size of step, the outcome is very different: 

 and  

Since  is a diagonal matrix the solution represented by Equation (4) is very simple as the inverse 

matrix  is obtain by replacing the non-zero diagonal matrix elements by the 
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reciprocal of diagonal elements in the original matrix. For this particular example, Equation (4) offers 

a least squares solution: 

 

The reason the solution to the Equation (4) is so easily derived is the polynomials  are not 

only linearly independent but are also orthogonal. The key step in the solution relies on the diagonal 

matrix elements of  being non-zero while the off diagonal matrix elements are zero. A similar 

solution for the polynomial pair  is not possible for the given step size and number of steps 

because the matrix  is singular. 

From a practical perspective if a singular matrix is obtained for  then the function set contains at 

least two functions for which the vectors obtained from these functions are simply a constant 

multiple of one another.  

Since the function set are typically experimental measurements (Figure 1), to an empirical scientist 

the natural solution is to identify the two vectors which are identical up to a multiplication factor 

and sum these two vectors together to obtain better signal to noise and replace these two 

dependent data in the least squares approximation by the sum of these two measurements. 

Mathematically, the steps taken by an experimentalist are mimicked by the steps taken by following 

an algorithm known as Singular Valued Decomposition (SVD). While a full treatment will be left to 

other texts, essentially the eigenvalues and eigenvectors of the matrix  are calculated and used 

to create a decomposition of the matrix into an equivalent diagonal matrix consisting of the 

eigenvalues of . Whenever a zero or near zero eigenvalue occurs, this is the indicator that the 

original matrix is near singular and the eigenvector associated with the near zero eigenvalue can be 

omitted from the linear least squares solution. The SVD algorithm therefore allows for a singular 

matrix  and delivers back an answer based on a reduced matrix which is not singular, where it is 

hoped the omitted information is not significant to the problem being solved by a linear least 

squares approximation. 

Extending LLS to PCA 
The above description of a linear least squares approximation solved using an eigenanalysis is 

intended to give a flavour of how to get an answer from a problem where the problem for one 

reason or another is poorly defined by accident. These ideas, however, apply equally well to 

problems which are poorly defined on purpose. These types of problems are ones in which a large 

set of data consisting of many measurements result in relatively few distinct functional forms and it 

is desired to count the actual number of these functional forms rather than needing to examine the 

individual data measurements for similarities. 

Principal Component Analysis (PCA) is performed by defining the least squares problem in terms of 

data measurements 
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where the vectors  are individual measurements of spectra or images. The eigenanalysis of the 

covariance matrix  yields eigenvectors and eigenvalues which allow the eigenvectors to be 

ordered with respect to the size of the eigenvalues. Since a real symmetric matrix can be 

geometrically interpreted as a quadratic form involving square and product terms, the act of 

determining the eigenvalues and eigenvectors provided a method for changing the basis vectors for 

the quadratic form to a basis set in which the quadratic form is expressed in squared terms without 

any product terms. The eigenvectors define the directions for the principal axes and the square root 

of the eigenvalues are interpreted as the sizes for the principal axes for the ellipsoid prescribed by 

the quadric form defined by the original symmetric matrix . 

In applying the same steps to this, somewhat arbitrary choice of data vectors, as is performed by a 

LLS approximation, the eigenanalysis orders the information in the data vectors to be consistent 

with a least squares criterion. That is, the eigenvector with largest eigenvalue represents the 

greatest variation in the original set of data vectors. Each successive eigenvector ordered by 

eigenvalues, like the LLS solution, provides the next most important contribution to the data set in 

terms of content, and by virtue of the eigenanalysis of a real symmetric matrix, these eigenvectors 

corresponding to distinct eigenvalues are mutually orthogonal. 

The result of the eigenanalysis of  allows the identification of vectors  processed from these 

eigenvectors and eigenvalues which are representation of the original data set in the sense that a 

linear combination of the form 

 

can be used to reproduce each of the data vectors , that is  (subject only to 

numerical errors). If instead of using all  vectors and only including those corresponding to 

eigenvalues of significant size then the reduced sum ( ) 

 

results in the possibility of excluding terms only representative of noise and therefore the vector  

offers a means of improving signal to noise in a data set. Effectively, each data vector is replaced 

by a linear least squares solution based on trial solution (5). 

The formulation in terms of vectors  is obtained by observing if  is an eigenvector of   with 

eigenvalue  then 

 

If  and  then  

 

and since it is assumed  is a matrix chosen to be constructed from a set of orthonormal 

eigenvectors it follows that , therefore  
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Thus the set of vectors  are constructed such that  is a diagonal 

matrix with diagonal element equal to the eigenvalues of the matrix . These n-dimensional 

vectors  are the abstract factors required to calculate a least squares approximation where the 

original data set  are vectors corresponding to the basis functions equivalent 

to those in Equation (1). 

The only remaining problem is that of computing the eigenvectors of   . If all eigenvectors are 

required then the problem is computationally challenging, but fortunately for many applications 

involving large data set not all the eigenvectors are required. That is Equation (5) is of more interest 

typically than Equation (4). NIPALS is an algorithm designed to compute eigenvectors one at a time 

in order of the magnitude of the corresponding eigenvalue. 

NIPALS Algorithm 
The first mystery about the NIPALS algorithm is surely the name. It might seem odd to use the term 

Non-linear when clearly the procedure yields a linear least squares outcome. In the case of this 

particular algorithm the use of Non-linear in NIPALS is referring to the rate of convergence rather 

than any non-linearity in the mathematics. One of the most remarkable aspects of the iterative 

procedure is how for most data sets the first eigenvector is obtain with almost no effort. NIPALS is 

non-linear in the same sense Newton-Raphson method is non-linear when finding a root of a 

function. The non-linear relates to the number of significant digits in the value of interest achieved 

following an iterative cycle. Sadly, like Newton-Raphson, the non-linear convergence is best case 

behaviour. Worst case convergence can be slow. To understand these convergence issues in NIPALS 

it is worth considering why the steps now describe do yield the required eigenvectors. 

In general terms and by way of illustrating a principle, consider a vector  of dimension , where 

the dimension for  corresponds to the number of data vectors forming the matrix  

 and where  are data vectors with  acquisition channels. 

If it is assumed a set of eigenvectors exist and are computed for the matrix  

 

and all else being equal, the eigen equation yields  orthonormal eigenvectors. Since these 

eigenvector for a real symmetric matrix form a basis set it is possible to write 

 

Thus 
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Therefore repeatedly multiplication by  results in a transformation of  as follows. 

 

The eigenvalues are raised to a power by repeatedly multiplying a vector by the matrix  . If one 

eigenvalue is larger than all others, the factor will dominate the summation term. Hence the 

resulting vector due to iterations is the eigenvector corresponding to the largest eigenvalue. 

A further consideration derives from Equation (6). Since   belongs to a set of orthonormal 

eigenvectors  and therefore the coefficient is Equation (6) are computed as 

follows  . 

If  then  and  . These relationships provide an alternative perspective for 

the converging sequence of vectors. In the event the eigenvalues differ only marginally resulting in a 

slow movement towards the largest of these similar eigenvalues, a good guess for the initial 

eigenvector is important to obtain convergence within a reasonable number of iterations. 

NIPALS includes iterative steps which rely on these types of transformations. However rather than 

forming a covariance matrix   the data matrix  is used to transform vectors in a sequence 

leading to computation of , the abstract factor corresponding to the largest eigenvalue of  . 

 

Figure 3: Vectors typical of noise are illustrated using scatter plots with principal axes characterising these four examples 
of noise distributions. Note how each set of ellipsoids determined for these four distributions result in different 
orientations for the axes determined from principle component vectors. 

The essential iterative steps performed during a NIPALS are as follows. 
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The input to an iterative step is a matrix , where initially . The output from each iterative 

sequence making use of  is a vector  and a matrix . These steps involve selecting an initial 

vector  of dimension  . A vector  of dimension  is computed using the following operations. 

 

 

where  is the unit vector corresponding to the vector . These steps represent a vector multiplied 

by a matrix rather than directly constructing a covariance matrix. Separating the action of the 

covariance matrix into these two intermediate steps is advantageous if convergence to the desired 

vector is rapid as it is designed to avoids matrix multiplication. 

A sequence of vectors  is constructed which converges to the vector , corresponding to the 

largest eigenvalue of  . Once the vector  is established the ultimate operation for a single 

iteration is to deflate  using the computed vector  

 

resulting in the next matrix in the NIPALS sequence  . The new matrix represents a set of 

vectors all belonging to a subspace of dimension one less than the previous step. The projection 

operation in Equation (7) is found also in Gram-Schmidt, a procedure for constructing a set of 

mutually orthogonal vectors. Deflating these  matrices permits the next iteration of the NIPALS 

procedure to target the next smallest eigenvalue and hence compute the next vector . 

 

Figure 4: These images represent the covariance matrix  constructed for the initial data  and after four 

NIPALS iterations   for a set of Al 2s/Cu 3s spectra. The values in  image are small by comparison to  
and distributed about zero representing vectors consistent with an increasing noise component. 

These  matrices progressively become populated by vectors increasingly with the characteristics 

of noise (Figure 3). The very condition for a rapid convergence is progressively lost following NIPALS 

steps. As the number of NIPALS iterations increases, data transformations based on rotations of 

vectors can be used in an attempt to secure an improved estimate for the initial vector for the 

NIPALS sequence, reducing the number of iterative steps. Such rotations are typically unnecessary 



 Copyright © 2014 Casa Software Ltd. www.casaxps.com 

10 
 

for the initial vectors as NIPALS non-linear behaviour often dominates, but as these  increasingly 

take on characteristics of noise (Figure 4) with no particular direction of any significance, pre-

processing these sets of vectors can reduce the overall number of NIPALS iterations before 

conditions are met which suggest no further principal components can be determined in acceptable 

time, and which differ from the expected noise in the original data. The NIPALS iterations terminate 

typically after a small number of vectors are determined. 

If all eigenvectors are required, then other approaches to computing the full set of eigenvectors will 

be more efficient, however, most applications encountered in CasaXPS do not require all eigenvector 

and particularly for large data sets NIPALS represents a significant time-saving algorithm, particularly 

for image processing. 

Iterative SVD Sort Determination of Abstract Factors 
A simple but effective iterative method for computing Principal Component Analysis abstract factors 

is presented. The algorithm is described and illustrated in terms of the covariance matrix which is 

central to PCA and preparing data in the form of singular value decomposition for a set of data 

vectors. 

 

Figure 5: Image representation of covariance matrices formed from vectors following transformation due to 
computational steps leading to a sequence of principal component abstract factors. 

Given a set of data vectors , the standard procedure for expressing these vectors 

as a corresponding set of abstract factors  is in terms of a singular valued 

decomposition 

 

where 

, ,  and  
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 is a diagonal matrix with diagonal matrix elements equal to the eigenvalues of the covariance 

matrix 

 

and  is the matrix formed from the normalised eigenvectors of  ordered with respect to the 

eigenvalues. The eigenvalues appear ordered in size along the diagonal of . 

Given a set of vectors derived from spectrum or image data, an impression for a covariance matrix 

can be presented in image format where dot product between pairs of vectors contribute values to 

image pixels intensities organised from the rows and columns of the matrix  . The image labelled A 

in Figure 5 is formed from the covariance matrix computed from raw spectral data. The sequence of 

images in Figure 5 labelled B, C and D represent the state of the set of vectors used to construct 

image A following calculation of the first three largest eigenvector for the original covariance matrix. 

A covariance matrix is symmetrical hence the obvious symmetry about the leading diagonal for 

these images in Figure 5. These images emphasize how, with each iteration of the algorithm, the off 

diagonal pixels diminish in absolute value relative to the magnitude of diagonal pixels. Computed 

eigenvectors result in large values appearing on the diagonal in the top left-hand corner and the 

orthogonality of these eigenvectors with respect of the entire set of vectors is evident from the low 

intensity pixels for the rows and columns associated with the computed eigenvectors. 

An interesting feature of these images is the algorithm not only identifies an eigenvector but also 

alters all other vectors to enhance the diagonal terms. If all eigenvectors were computed the image 

would appear with non-zero pixels along the diagonal only. Each computed eigenvector therefore 

results in a general sorting of the data into vectors with characteristic typical of an orthogonal set of 

vectors. 

These eigenvectors are computed by sequentially transforming the set of vectors using  

matrices calculated from three vectors at a time. The process is an iterative procedure where after 

each pass through the data set an approximation to the next largest eigenvector is obtained.  The 

steps are defined as follows: 

Given a set of vectors  

 

 

repeat “while current approximation to largest eigenvector has not converged” 

     loop  =  down to 3 do 

“replace the vectors ,  and  by transformed vectors corresponding to the 

eigenvectors of covariance matrix computed from ,  and  in the order of magnitude 

of the eigenvalues and return the largest eigenvalue.” 
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These remarkably simple steps provide a regime for computing the abstract factor vectors for a data 

matrix. Each such step places the abstract vector corresponding to the largest eigenvalue of the 

 covariance matrix in the vector . 

These steps are also suitable for providing an initial vector for input to the NIPALS algorithm, but will 

converge to the desired vectors representing the abstract factors for a principal component analysis. 

 

Figure 6: Three vectors (in this case derive from spectra without obvious peak structure) transform to three vectors such 
that the scatter plot is aligned with the coordinate axes. 

The mechanism for generating an eigenvector is as follows. Given three non-orthogonal vectors , 

 and  , calculating the  covariance matrix and determining the eigenvectors provides a 

means of defining a matrix which transforms these three original vectors to three vectors which 

span the same vector subspace as the original three vectors. If the coordinates from these three 

vectors are used to define the position of points in 3D space (Figure 6), the eigenvectors have the 

following meaning. The transformation matrix formed from the computed eigenvectors of the  

covariance matrix prescribe how to alter the scatter plot of points in 3D space to maximise variation 

in the scatter points is in the direction of the axes in order of eigenvalue magnitude. Thus each step 

in the inner loop gathers the information contents into two vectors, the largest of which 

approximates the desired abstract factor. Each  matrix when calculated from the next vector 

pushes the least significant information down the set of vectors while at the same time adding to the 

most significant information at the top of the list. Convergence is accelerated by using  

covariance matrix because the middle of the three eigenvectors can alter significantly to 

accommodate the new vector when added to the top-most two vectors, as stated in the inner loop 

above, allowing the principal axis with each iteration to steadily progress towards the abstract vector 

of interest. 

A single pass through a set of vectors does not yield the exact abstract factor of interest for the 

following reason. The first abstract factor must be orthogonal to all vectors in the set. Each new 

 calculation only ensures the currently used three vectors are mutually orthogonal and 

necessarily removes the orthogonality from the previously performed transformation. However, 

each cycle through the inner loop results in the magnitude and therefore influence of the first two 

vectors increasing compared to the vectors over which the iteration is performed.  As a consequence 

repeating the steps on a set of transformed vectors alters the least significant vectors until the most 

significant vector is orthogonal to all other transformed vectors. 

Orthogonality of the vector to the entire set of vectors is a necessary condition for determining the 

next abstract factor, it is not however a sufficient condition.  
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Mathematical Logic  
The covariance matrix is logically embedded within the steps followed by iterative SVD.  by 

definition a is real symmetric matrix. The Jacobi method for real symmetric matrices solves the 

eigenproblem by applying Givens transformations to zero two off diagonal elements of  per 

transformation. Iterative SVD using a  matrix indirectly performs the exact same 

transformation as a Givens matrix to  by transforming the data vectors. When extending the  

approach by using a  matrix to transform data vectors, six rather than two off diagonal 

elements of  per transformation are zeroed using a matrix of the form 

 

 is constructed by the iSVD to have the property 

 

Applying  to the matrix  has the following consequences for the transformed covariance matrix 

 

specifically 

 

Iterative SVD applies these orthogonal transformations to the data matrix rather than directly to the 

covariance matrix as follows. 

 

 

Given the sequence of matrices  and the transformation matrix (8), the following is true 
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Thus applying the orthogonal transformation to the data matrix is logically equivalent to applying 

the transformation to the corresponding covariance matrix and since Jacobi iterations converge to 

the eigenvectors and eigenvalues of , the same is true for iterative SVD. 

A Closer Look at PCA and the Covariance Matrix 
The use of the covariance matrix  to perform the singular decomposition of the data matrix  

might seem natural in the context of the design matrix used to perform linear least squares fitting of 

target vectors to a data vector. However, the use of the covariance matrix formed from the data can 

be viewed in terms of physics in the following sense. If each component form the three data vectors 

are viewed as the position in 3D space of a unit mass particle, then the moments of inertia for a set 

of unit mass particles when rotated with a fixed angular speed attains a minimum kinetic energy for 

a specific choice of an axis of rotation in 3D space. This problem from classical mechanics is well 

known and solved using an eigenanalysis for the matrix 

 

where 

, , , ,  

and  

 

The formulation for this matrix is based on minimizing the moments of inertia  about a arbitrary line 

 passing through the origin for a particle  with unit mass and position vector . If 

the perpendicular distance  from the point  to the line  with direction cosines , then 

 

and since  

L 

z 

y 

x 
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After simplification the moment of inertia for a set of unit mass particles about a line  reduces to 

 

or written as a quadratic form 

 

Thus the problem of finding the minimum moment of inertia, i.e. minimizing the sum of the square 

perpendicular distances by choosing the appropriate direction cosines is that of minimising  subject 

to the constraint  , that is, the constraint ensures valid direction cosines are 

involved in the solution. 

Applying the method of Lagrange multiplier to minimising  subject to  leads to 

the requirement to determine eigenvalues and eigenvectors of 

 

So, having observed the requirement to minimise the sum of squares of perpendicular distances to a 

line yields a minimum moment of inertia for a given distribution of unit mass particles, how does this 

relate to the covariance matrix ? 

The covariance matrix is formed from the data vectors  as follows: 

 

The matrix  is formed from the data vectors where ,  

and  as follows 

 

Therefore 

 

 

If  is an eigenvector of  with corresponding eigenvalue  then 
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and so 

 

Therefore  is also an eigenvector of  with eigenvalue . 

Thus, determining the eigenvectors for  also solves the problem of determining the direction for a 

line by minimising the sum of the squares of the distances to that line. The least squares problem 

solved by working with the eigenvectors of the covariance matrix  is now clear.  

The eigenvalues  for the matrix  are the moments of inertia about the axes of rotation defined by 

the eigenvectors for which the system is in a possible maxima or minima. The smallest eigenvalue for 

 is the minimum moment of inertia for the given system of unit mass particles. The relationship 

between the eigenvalues of  and the eigenvalues of  is essentially an adjustment of the absolute 

values for the eigenvalues for  relative to a new reference value, namely, half the sum of the 

extreme moments of inertia for three particles positioned on the three coordinate axes at distances 

from the origin equal to the magnitude for the three data vectors , respectively. Specially  

 

Further, since the eigenvalues of  are the roots of the characteristic polynomial 

 

The sum of the roots for the cubic polynomial is equal to minus the coefficients of , namely, 

, therefore the three eigenvalues of  (  and ) are such that 

 

Thus the three eigenvalues of  are ,  and . 

A point worth highlighting is the eigenvalues of  are physically significant and represent the values 

for the moments of inertia  about the principal axes. The principal axes are in the directions defined 

by the eigenvectors of , and since if  is a matrix formed from the eigenvectors of  and  is a 

diagonal matrix with non-zero elements equal to the, assumed distinct, corresponding eigenvalues 

of , namely 

 

 then  

 

Thus, the moments of inertia  about an axis with direction cosines  is given by 
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If  is the eigenvector corresponding to eigenvalue  then since the eigenvectors are 

constructed to be orthonormal, that is,  

 

Therefore the moments of inertia about the principal axis with direction is 

 

Covariance Matrix and Least Squares Optimisation 

While moments of inertia provide a physical interpretation for PCA, the common practice of working 

with the covariance matrix  can be understood by following through the logic of minimising the 

sum of squares of the perpendicular distances from each point in a scatter plot to the principal axis 

line. If Pythagoras is used to determine the distance from a point is the scatter plot to a line through 

the origin with direction cosines , the minimisation problem can be expressed as 

follows. 

 

subject to the constraint  

 

 

L 

z 

y 

x 

 

  P 

 

 

 

 

This time, applying Pythagoras theorem 

to determining the distance  

Since 
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Each point in the scatter plot has coordinates , therefore 

 

and 

 

The covariance matrix is derived by applying the method of Lagrange multipliers to include the 

constraint , namely the optimisation of the parameters  for the function 

 

Differentiating with respect to  yields 

 

Equating to zero yields 

 

Similarly,  and  provides two more equations as follows. 

 

 

Using , , , , 

 and  and expressing the above simultaneous equations in matrix form 

the eigenvector problem expressed in terms of the original data vectors results as follows. 

 

Thus, the covariance matrix  is recovered from the optimisation problem. 

Normalising the eigenvectors determined from the covariance matrix and forming a matrix from 

these normalised eigenvectors provides, by matrix multiplication, a means of transforming the set of 

scatter points formed from the input vectors  to a new set of 3D points corresponding to abstract 

vectors  for which the relative positions of the scatter points formed from the coordinates of  

are the same as for the scatter points formed from . These ideas are illustrated in the Appendix. 

Further, the relationship between the covariance matrix eigenvector solution and optimisation 
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based on a least squares criterion constructs these abstract vectors in directions which account for 

the variation in the data in order of significance.  The most significant information is moved to one 

abstract vector and the least significant information is moved to another. The ability to partition 

information is the reason iterative SVD sort offers a means of calculating the next most significant 

abstract factor in a larger set of vectors. 

Conclusion 
SVD Sort and NIPALS are complementary in the sense the output from iterative SVD sort can be used 

as the input to NIPALS with the implied reduction of NIPALS iterations as a consequence of beginning 

NIPALS with a vector already closely approximating the desired abstract factor. Nevertheless, 

iterative SVD sort is capable of generating the desired abstract factors without the need to apply 

NIPALS iterations with the following advantage. 

Gram Schmidt allows the transformation of any set of linearly independent vectors to a mutually 

orthogonal set of vectors. Projection operations are the means by which Gram Schmidt computes 

orthogonal vectors. Any mutually orthogonal set of vectors used to construct a covariance matrix 

results in a diagonal covariance matrix, but without the eigenanalysis of the original covariance 

matrix these Gram Schmidt vectors are not the desired least squares solution. 

NIPALS differs slightly from the iterative SVD sort approach in that after an approximation to an 

abstract factor is obtained the data set is reduced in dimension by applying a projection operation. 

This projection operation is similar to Gram Schmidt and is used to remove the computed abstract 

factor from the set of data vectors. The quality of this vector as an approximation to the desired 

abstract factor is therefore important at each step, since removing a vector which poorly 

approximates the abstract factor will alter the nature of the reduced data set and hence the 

eigenvectors subsequently determined. The projection operation ensures the set of vectors 

determined will be orthogonal and provide off diagonal elements in a covariance matrix for the final 

set of vectors which are clearly close to zero. Thus the projection operation removes any feedback 

suggesting the procedure generated vectors different from the desired abstract factors. 

Iterative SVD sort on the other hand does not require projection as the means of reducing the 

dimension within the set of vectors. Rather, the  vectors are partitioned into a new abstract factor 

approximation and  vectors approximately orthogonal to the new abstract factor. The 

subsequent abstract factor is obtained by processing the set of  vectors hence the final set of 

vectors constructed by iterative SVD sort approach does not force orthogonality but extracts 

orthogonality. As a consequence the final set of vectors can be assessed by constructing a 

covariance matrix. Off diagonal covariance matrix elements act as indicators the procedure 

generated a true representation of the principal component abstract factors. 
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Appendix 

Graphical Interpretation of Iterative SVD Sort 
The following scatter plots are designed to illustrate the transformations to the original data vectors 

resulting from iterative SVD sorting six data vectors. 

These scatter plots in Figures 7 through 13 are selected to highlight the relationship between 

adjacent vectors in the list of six vectors. Spectra are plotted as scatter diagrams as follows. The top 

left tile in each figure represents the first two vectors in the list indicated in Figure 7. Since the first 

abstract factor computed by iterative SVD sort is placed in the first vector in the list, the top left tile 

follows the abstract factor of interest. The additional three scatter plots present the other five 

vectors plotted as sequential sets of three vectors. 

 

Figure 7: Initial set of data vectors. Note how these sets of vectors plotted as points in 3D space using the coordinate 
from each vector shown in the display tile initially appear as distributions with clear directions, which by virtue of the 
evolving set of vectors initially appear to favour the leading diagonal of a cube. 
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Figure 8: The first step within the first iteration of the SVD sort transforms the first two vectors combined as a set of 
three vectors with the last vector in the list of vectors.  The top left tile traces the relationship between the first two 
vectors in the list and is therefore altered by the 3x3 eigenanalysis. The two right most tiles both include a vector 
transformed by this first step. 
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Figure 9: The second step in the first iteration transforms a vector from the three vectors displayed in the bottom-left 
tile by performing a 3x3 eigenanalysis with the first two vectors. Two vectors are yet to be modified. 
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Figure 10: The third step introduces the last but one unmodified vectors into the calculation. Each vector is combined 
with the first two vectors from the previous step yielding these new vectors which alter the scatter plots. 
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Figure 11: The final unmodified vector is now transformed by computing the eigenvectors for a 3x3 matrix formed from 
the first two vectors and the yet to be modified vector. These scatter plots represent the state of play after one cycle 
through the set of six vectors. Each calculation modifies three vectors at a time and following transformation the three 
vectors represent three mutually orthogonal vectors where the maximum variation is expressed in the first vector in the 
list. The least variation within the three vectors is moved into the third vector. As a result the first two vectors in the list 
of six vectors are always orthogonal to each other but only orthogonal to the third vector in the list after a full cycle. 
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Figure 12: After a number of iterations applied to the list of six vectors the first vector in the list approaches an 
approximation to the first abstract factor. Each time a new vector is added to the first two vectors and an eigenanalysis 
is performed the data set are nudged in the direction of vectors orthogonal to the first two vectors. The first vector in 
the list converges to a vector which is computed to have the maximum variation with respect to each set of three 
vectors on a triple basis and is orthogonal to all other vectors. The set of vectors not including the first vector are left in 
an intermediate state. 
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Figure 13: All six vectors are transformed by computing all six abstract factors. These data were selected to have three 
significant abstract factors. As a consequence the spherically symmetrical appearance of the bottom right tile is typical 
of abstract factors representative of noise. Mutual orthogonality is evidenced by the alignment of the axes in each 
scatter plot. Note how Figure 6 represents the state after computing the first abstract factor and how the scatter plots in 
Figure 12 do not align with the coordinate axes indicating the remaining vectors do not obey the conditions required for 
abstract factors. 

 

Figure 14: The six spectra used in Figures 7 through 13 shown as raw spectra and after all are transformed to abstract 
factor vectors corresponding to the scatter plots in Figure 13. 


