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Variable Forces and Differential Equations 

 

Hooke’s Law, empirically determined (determined by experiment), states for a spring of natural 

length  when extended  beyond the natural length exerts a tension  proportional to the 

extension . Introducing the constant  known as modulus of elasticity for a particular spring (or 

extensible string), the tension due to the extension of the spring is given by: 

 

The term natural length means the length of a spring before any external forces act to stretch or 

compress the spring. 

If a particle is attached to a light spring and the spring is stretched to produce a displacement  

from the natural length of the spring, then the force acting upon the particle due to the spring is 

given by 

 

Applying Newton’s second law of motion , where  the equation can be written in 

terms of  and derivatives of  as follows. 

 

Equation (1) is a second order linear differential equation, the solution of which provides the 

displacement as a function of time  in the form . Differential equations are often 

 

A spring balance measures the weight for a range 

of items by exerting an equal and opposite force to 

the gravitational force acting on a mass attached to 

the hook. The spring balance is therefore capable 

of applying a variable force, the source of which is 

the material properties of a spring. When in 

equilibrium, the spring balance and mass attached 

to the hook causes the spring to extend from an 

initial position until the resultant force is zero. 

Provided the structure of the spring is unaltered by 

these forces, the tension  in the spring is 

proportional to the extension  of the spring from 

the natural length of the spring. 

The tension due to the spring is an example of a 

force which is a function of displacement: 
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encountered when studying dynamics, therefore before returning to problems relating to the 

motion of particles attached to elastic strings and springs the technical aspects of differential 

equations will be considered. 

Differential Equations 
Ordinary differential equations involve a function and derivative of the function with respect to an 

independent variable. For example the displacement from an origin of a particle travelling in a 

straight line might be expressed in the form of a differential equation for the displacement  

in the form 

 

A differential equation is a prescription for how a function  and functions obtained by 

differentiating the function can be combined to produce a specific function, in this case . 

Whenever the derivative of a function is involved, a certain amount of information is lost. The 

integral of a derivative of a function is the function plus an arbitrary constant. The arbitrary constant 

represents the lost information resulting from when the derivative is calculated. For example, 

 

The two functions  and  both have the same derivative  therefore if presented with the 

derivative alone, the precise nature of the function is unknown; hence the use of a constant of 

integration whenever a function is integrated. 

 

Combining derivatives to form a differential equation for a function also means information about 

the function is missing within the definition and for this reason the solution to a differential 

equation must be expressed as a family of solutions corresponding to constants introduced to 

accommodate the potential loss of information associated with the derivatives. A general solution 

to Equation (2) is 

 

 and  are constants yet to be determined. Both  and 

 are solutions to the differential equation as are any number of other choices 

for the values of  and . For a given problem, if at a given time the position and the derivative of 

position are known, then a specific solution from the set of solutions represented by Equation (3) 

can be obtained. The method used to establish solutions to equations of the standard form, of 

which Equation (2) is an example, will be discussed in detail later. 

Solving general differential equations is a large subject, so for sixth form mechanics the types of 

differential equations considered are limited to a subset of equations which fit standard forms. 

Equations (1) and (2) are linear second order differential equations with constant coefficients. To 

begin with, solutions for certain standard forms of first order differential equations will be 

considered. 
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The differential equations used to model the vertical motion of a particle with air resistance 

prescribe the rate of change of velocity in terms of velocity: 

 

Or depending on the model used for the resistance force, 

 

Equations (3) and (4) are first order differential equations specifying the velocity as a function of 

time. Equation (3) is a linear first order differential equation since  and  appear in the equation 

without products such as ,  or . Equation (4) is nonlinear because  appears in 

the equation. These first order differential equations (3) and (4) are also in a standard form, namely, 

 

The key point being the derivative can be expressed as the product of two function where one 

function expresses a relationship between the dependent variable  while the other only involves 

the independent variable . For equation (4)  and . The solution for the 

standard form (5) is obtained by assuming 

 

The solution relies on the separation of the variables. For Equation (3),  and 

, therefore the solution can be obtained as follows: 

 

 

If the is particle initially released from rest, then  when , therefore , hence 

 

The same procedure could be used to find a solution for the nonlinear differential equation (4). 

Equation (3) represents a first order linear differential equation for which two standard forms can 

apply. In addition to being open to direct integration using (5) and (6), Equation (3) is of the form: 

 

Differential equations of the form (7) can be solved by determining a, so called, integrating factor 

 such that the differential equation can be reduced to an equivalent equation: 
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If , then by the rule for differentiating products 

 

If Equation (7) is multiplied throughout by the integrating factor  

 

Equation (9) will reduce to Equation (8) provided 

 

And 

 

Equation (10) is valid provided 

 

Or 

 

Applying the solution based on separation of variables yields 

 

Equation (9) can now be written in the form 

 

Therefore if  is used in Equation (8), an equivalent differential equation to Equation 

(11) is obtained as follows 

 

 

Since Equation (3) can be written in the standard form defined by Equation (7), namely, 
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We can therefore identify the following functions  and , therefore the solution 

requires an integrating factor of , therefore 

 

 

Applying the same initial conditions as before, namely,  when  yields  resulting 

in the same answer as before 

 

Two different methods applied to a single problem leading to the same conclusion provide a sense 

of reassurance. An alternative to explicitly solving a differential equation is to calculate the solution 

using numerical methods. It is important to realise, however, that even when an expression or a 

numerical solution is produced, there is the possibility an assumption used in the solution is invalid 

and therefore the solution is only valid for a limited range of the independent variable. An equation 

of the form 

 

requires the condition  since the solution involves . The importance of such restrictions can 

be nicely illustrated by the follow sequence of algebraic steps applied to any number  leading to a 

contradiction. 

 

 

So far so good, but attempting to divide by  leads to 

 

 

In terms of manipulation of numbers, these steps appear fine but for the step in which  is 

eliminated. Dividing by zero is clearly shown to produce an incorrect answer. Differential equations 

may have conditions leading to similar issues, but for now it is sufficient to understand the solution 

techniques for differential equations and defer these problematic considerations for those studying 

mathematics at a higher level than this text. 

Second Order Linear Differential Equations with Constant Coefficients 

Dynamics problems involving Newton’s second law of motion often involve second order linear 

differential equations as illustrated in the derivation of Equation (1) for a particle attached to a light 

spring. For an understanding of simple harmonic motion it is sufficient to investigate the solution of 

differential equations with constant coefficients: 
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That is, equations of the form (12) for which ,  and  are all constant. 

The equation of motion for a particle attached to a light spring is of the form (12) 

 

where , ,  and . 

Apart from being important mathematical methods for mechanics in their own right, solutions of 

first order differential equations play a role in solving equations of the form (12). Before writing 

down the solution for Equation (12), first the solution for the equation 

 

must be established. 

While  is a function obtained from the function , the act of differentiating  could be 

defined in the sense that 

 

Similarly, the second derivative of  might be expressed as 

 

Using these alternative forms for the first and second derivative of  Equation (14) could be 

expressed as 

 

It might seem reasonable to think of these operations expressed by Equation (15) in an equivalent 

form using the analogy for factorising a quadratic equation 

 

as 

 

 

If Equations (15) and (16) are equivalent, then the solution  might reasonably be expected to be 

obtained from the first order differential equation 
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Applying separation of variables 

 

Thus a solution to Equation (16) obtain from the methods above is . 

Since the roots for the quadratic polynomial are also interchangeable when Equation (17) was 

chosen, it might also be reasonable to assume  is also a function which satisfies 

Equation (14). 

Since 

 

 

 

Therefore substituting into Equation (14) 

 

And since the value is a root of   , hence  

is a solution of the differential equation (14). Similarly,  must be a solution and since 

, 

 

is also a solution of the differential equation (14). 

Equation (18) is consistent with the previous discussion about potential loss of information resulting 

from differentiating a function, namely, the second derivative of a function potentially needs two 

constants of integration to allow for a class of functions all of which have the same second 

derivative. The introduction of two constants in the solution serves to introduce the necessary 

generality needed to accommodate the range of functions  satisfying Equation (14). 

Repeated Root for  

The generality of the solution (18) runs into problems if the quadratic equation  

has repeated roots , in which case Equation (18) reduces to 

 

Namely only a single constant and function appear in the solution. It becomes necessary to look for 

a further solution before all the possible solutions to the differential equation are obtained. It can 

be shown that if  is a solution of (14), then  is also a solution of (14). The 



 Copyright © 2011 Casa Software Ltd. www.casaxps.com 

9 
 

fact that a second solution is required and the method for constructing the second solution are both 

consequences of theory beyond the scope of this text, so simply showing that  is a 

solution of (14) will suffice. 

 

 

Substituting into the left-hand side of (14) 

 

 

If  is a repeated root of  then 

 so  and  

 

For repeated roots of the auxiliary equation , the general solution of (14) is 

 

Complex Roots for  

The motivation for considering differential equations was the equation of motion for a particle 

attached to a light spring. The resulting differential equation is written in the form of a second order 

differential equation with constant coefficients: 

 

The auxiliary equation is therefore 

 

This quadratic equation has no real roots, however the complex roots are  and 

, where  and . The solution (18) still applies in the sense 

 

Using Euler’s formula , the complex solution to Equation (19) is  

 

 

While expressed as a complex valued function of a real variable, the Equation (20) suggests 

 and  are solutions of Equation (19). 
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First consider  

 

 

Therefore  is indeed a solution of (19). Similarly  is another solution. The 

real valued general solution of (19) is therefore of the form 

 

Defining the alternative constants  and  as follows: 

 

The solution to equation (19) can be written as follows: 

 

 

Using  the solution can be expressed in the form 

 

The solution (22) is an alternative formulation of solution (21), in which the constants  and  can 

be interpreted as the amplitude or maximum displacement from the centre for the oscillation of a 

particle attached to a spring and as defining the initial displacement of the particle at the time 

. Equation (22) is the more common form used when analysing dynamics problems described as 

simple harmonic motion, of which a particle on a spring is one example of this type of motion. 

More generally, the auxiliary equation  has complex roots of the form 

 and  whenever the  and . Under these circumstances 

the solution as prescribed by Equation (18) takes the form: 

 

Following a similar analysis used to obtain Equation (20) the complex valued solution is of the form 
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Since the differential equation (14) has real coefficients and equates to zero, it might be reasonable 

to assume both real and imaginary part of the complex solution must be solutions of the differential 

equation (14). A solution of the form  is therefore a nature first choice to test by 

substitution into the differential equation. 

 

 

 

 

Substituting into 

 

Therefore, 

 

Since the complex roots of the auxiliary equation  are obtained from 

 

it follows that  and , therefore 

 

 

Similarly 

 

Thus,  is a solution of  whenever the auxiliary equation 

 has complex roots  and , with . 



 Copyright © 2011 Casa Software Ltd. www.casaxps.com 

12 
 

A similar argument shows  is also a solution of (14) and therefore a real valued 

solution of  can be expressed in the form: 

 

 

There are problems in mechanics for which the homogeneous differential equation is replaced by an 

equation of the form: 

 

For example, the motion of a particle of mass  attached to a spring with a constant additional 

force in the direction of the x-axis given by  results in the equation of motion: 

 

Or 

 

The general solution for these types of problems reduces to three steps: 

1. Find the general solution  for the complementary homogenous equation 

 

2. Find any function  not part of the complementary solution which satisfies 

 

Roots of Auxiliary Equation  and  General Solution 

Real roots:  
 

 
 

Real roots:  
 

 
 

Complex Roots:  
 

 
 

 

 

 

To solve a second-order homogeneous linear differential equation of the form: 

Determine the root  and  of the auxiliary equation 

The general solution for the differential equation is then one of the following three options: 
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3. Add the two solutions together to form the general solution for (24) 

 

The function referred to as  is known as a particular integral, while  is the 

complementary function. Since the complementary function is established using the table 

above, the problem is therefore to construct a particular integral for equations of the form (24). 

Consider the equation of motion: 

 

If  then the solution for  has already been established to be 

 

The problem is to find the simplest function  such that 

 

Since the function  appears on the left-hand-side if  is used as a solution where 

 is a constant, the first and second derivatives of  are zero and therefore 

 

The general solution is therefore 

 

 

For these specific types of second order differential equations it is possible to find many 

different particular integrals, however it can be shown that the general solution constructed 

from the complementary function and any one of these particular integrals result in the same 

answer when boundary conditions are applied of the form  and . 

Methods for determining particular integral for differential equations of the form (24) are again 

beyond the scope of this text, so a limited number of special cases will be tabulated with their 

use illustrated by example. 
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To illustrate the use of these particular integrals, consider the problem of a particle attached to 

a spring, where instead of a constant force  the disturbing force varies with time according 

to . Newton’s second law of motion yields the equation 

 

Or if  

 

Solving Equation (25) involves determining the complementary function  for the homogeneous 

equation 

 

and finding an appropriate particular integral  for the function . Since the form 

for the function  matches  where , the particular integral 

must be of the form , where both  and  must be determined by 

substituting into the identity 

 

Given the form  

 

And 

 

Therefore 

 

Equating coefficients for sine and cosine yields 

Form for f(t) Form for Particular Integral 
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Therefore for  the particular integral is 

 

And the general solution is 

 

 

Example: 

Given the boundary conditions  and  at  and the differential equation 

 

Find  as a function of . 

Solution: 

The first step is to calculate the general solution to the homogenous differential equation 

 

It is important to determine the complementary function first since there is always the possibility 

the standard option for the particular integral corresponding to  is included in the two 

functions used to construct the complementary function. Obtaining the complement function 

allows an informed decision to be made when selected the form for the particular integral. 

The auxiliary equation corresponding to  is 

 

The complementary function is therefore constructed using the form for two distinct real roots: 

 

Since  cannot be constructed from  the particular integral can be chosen to be 

 

Substituting into  
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The particular integral must satisfy the differential equation 

 

Therefore 

 

The general solution for the differential equation is  

 

 

Applying the boundary conditions  and  at  

 

 

Therefore  at  results in the equation for the constants  and  

 

Solving the simultaneous equations (a) and (b) yields  and . The boundary conditions 

result is the particular solution 

 

Example: 

A particle of mass  attached to a spring is subject to three forces: 

i. A tension force –  

ii. A damping force proportional to the velocity –  

iii. A disturbing force  

By applying Newton’s second law of motion, express the displacement  in terms of time  as a 

differential equation and solve the differential equation for the general solution . 

Solution: 

Newton’s second law of motion  allows these three forces to be combined in the form 
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Equation (a) is a second order linear differential equation with constant coefficients. The solution is 

therefore of the form . 

The complementary function is obtained from the general solution for the corresponding 

homogeneous equation 

 

The auxiliary equation for Equation (b) is 

 

Since  the roots for the auxiliary equation are complex and 

therefore the complementary function is of the form 

 

Where  and . 

 

The particular integral  for the function . Since the form for the function  

matches  where  and , the particular integral must be of 

the form , where both  and  must be determined by substituting 

into the identity 

 

Given the form  

 

And 

 

Therefore 

 

 

Collecting coefficients of  and : 
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Coefficient of : 

 

Coefficient of : 

 

 

The particular integral for Equation (a) is therefore 

 

With general solution 

 

 

Reduction of Differential Equations to Standard Forms by Substitution 

The discussions above are concerned with finding solutions to a select group of differential 

equations appearing in standard forms, namely,  

1. first order differential equations where the variables can be separated to allow direct 

integration,  

2. first order linear differential equations by determining an integrating factor and  

3. second order linear differential equations with constant coefficients. 

These standard forms can also be useful for problems where a change of variable transforms a 

differential equation from one form to a standard form for which a solution can be found. 

By way of example, consider the second order differential equation for a particle attached to a light 

spring. 

 

Rather than treating the problem as a second order differential equation, using 

 

Therefore  

 is can be expressed as a first order differential equation involving velocity  and 

displacement : 
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Substituting  implies , therefore the equation is transformed to a first order linear 

differential equation 

 

Using direct integration 

 

Since  

 

If the constant of integration is rewritten in the for  (imposing  which is 

require by  

 

Equation (26) relates velocity to displacement and since  is also a first order differential 

equation for . 

 

Using separation of variables 

 

 

Making the substitution  

 

 

Hence 

 

Since , 
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These two solutions are of the form 

 

That is, the same solution for the original differential equation is recovered by direct integration as 

by applying the theory for the second order linear differential equation to the displacement as a 

function of time. Equation (22) and Equation (27) are identical. 
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Simple Harmonic Motion 
While the introductory problems in mechanics involving the motion of a particle are often 

concerned with moving a particle from one place to another, there is an important class of 

problems where a particle goes through a motion, but at some point in the trajectory the particle 

returns to the initial position. An obvious example of repetitious motion is a Formula 1 race car 

which must execute a sequence of laps of a race circuit. Other examples might be the hands of an 

analogue clock or the vibrations in a tuning fork. The key characteristic for all these motions is that 

after a time period, the particle or particles retraces over ground previously encountered. 

While periodic motion is often complex in nature, many problems can be reduced by approximation 

to a more simple form known as Simple Harmonic Motion (SHM). An example of such an 

approximation is a simple pendulum, where for small oscillations the motion can be approximated 

to simple harmonic motion. 

Simple Harmonic Motion is an oscillation of a particle in a straight line. The motion is characterised 

by a centre of oscillation, acceleration for the particle which is always directed towards the centre 

of oscillation, and the acceleration is proportional to the displacement of the particle from the 

centre of oscillation. These statements are encapsulated in the differential equation. 

 

Such a linear motion is precisely the motion of a particle of mass  attached to a spring of natural 

length  when moving on a smooth horizontal surface after being displaced a distance  from the 

natural length of the spring before being released.  

When approximating a motion as simple harmonic, the problem is reduced to that of a straight line 

trajectory for a particle corresponding to the x-coordinate of an equivalent particle moving in a 

circle of radius  with a constant speed. This motion of a particle in a circle provides a geometric 

perspective for simple harmonic motion expressed in the solution . 

 

 

 

 

 

Simple Harmonic Motion 

For constant  the equation of 

motion 

  

has solution 
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The trajectory for a particle undergoing Simple Harmonic Motion is described by a  sine or 

cosine functions in terms of time, hence the name for the motion. 

 

More complex oscillation can be analysed in terms of combinations of sine and cosine functions, so 

understanding the more fundamental problem of simple harmonic motion provides the basis for 

understanding these more general problems.  

 

A technologically significant problem is that of interpreting infrared spectra, which can be 

understood in terms of oscillations associated with molecular bonds. A molecular bond is modelled 

as springs connecting two masses, hence the relevance of SHM. Infrared spectra are used to 

 

 

 

More complicated periodic motion can be recreated by combining these three sinusoidal 

motions representing simple harmonic oscillations. For example the motion of a piano string 

and be synthetically modelled from a number of sinusoidal motions. 

 

Simple Harmonic behaviour:  
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characterise materials for medical science and other key areas of technology. The following Fourier 

Transform Infrared (FTIR) spectrum illustrates numerous oscillations in intensity which can be 

traced back to vibrations associated with carbon-hydrogen bonds in polystyrene (PS). 

 

The Simple Pendulum 
A simple pendulum consists of a particle of mass  attached to one end of a light inextensible string 

of length  where the other end of the string is attached to a fixed point. The particle when at rest 

hangs vertically below the fixed point. The particle and string when displaced from the equilibrium 

position oscillate in a circular arc in the same vertical plane. This physical description suggests the 

particle moves in 2D and therefore the motion will not behave like simple harmonic motion. The 

value in studying the simple pendulum lies in observing the types of approximation and restrictions 

to the motion of the particle that allow a description in terms of simple harmonic motion.  

 

In general, these equations for the simple pendulum do not match the equation for simple 

harmonic motion , however if the length of the string  is large compared with the 

vertical displacement  then , therefore 

 

 

 

 

 
 

 

 

 

 

 

A diagram for the simple pendulum showing the 

forces acting on the particle of mass  helps to 

write down the equations of motion  using 

the unit vectors  and , to express the displacement 

from the origin  in terms of the tension  exerted 

by the inextensible string and weight : 

 and  

 

 

FTIR Spectra from polystyrene. 
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The assumption that  is large compared with  also suggests that the acceleration in the  direction 

is small too, therefore the  component for the equations of motion yields 

 

Applying these approximation to the equation of motion for the  direction 

 

then becomes on replacing  and  

 

where  

Thus, the motion of a simple pendulum for which the length of the string is large compared to the 

vertical displacement of the mass reduces under approximation to simple harmonic motion. 

Note the condition that  is large compared with  is equivalent to stating the maximum angle  for 

the oscillations is small. Also, the assertion that  is geometrically equivalent to observing for 

large  and small  the trajectory of the particle for small angles is almost without curve, that is, can 

be approximated by a straight line. 

The reason for analysing a mechanical system such as the simple pendulum is to extract useful 

information. Historically, a pendulum offered a means of measuring time, the method being to 

count the number of complete oscillations. Once the motion of a pendulum is characterised in 

terms of simple harmonic motion, the mathematics of the solution  provides 

the means of calculating such useful parameters. 

Solving Problems using Simple Harmonic Motion 

Simple harmonic motion is referred to a periodic because after a time interval or period, the same 

trajectory for the particle begins afresh. This statement is mathematically described by the 

displacement  for the particle must be the same at two times  and : 

 

 

 

The shortest time  is called the period  and is therefore . 

For a simple pendulum of length , the time period is determined by  and is therefore 
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In general, if a problem can be expressed in the form of simple harmonic motion, that is, the 

equation of motion is of the form 

 

then the time for one complete oscillation is given by 

 

 

Note: the time period for a particle moving under simple harmonic motion is independent of the 

maximum displacement from the centre of oscillation  known as the amplitude. The velocity for 

the particle does depend on the amplitude. 

Given the displacement for SHM, 

 

 

Eliminating  from these two equations by multiplying Equation (1) by  before squaring and adding 

the resulting equations yields 

 

Using  

 

 

 

 

 

 

 

 

 

Comparing solution to 

Implies  
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Equation (3) shows the velocity for a particle moving in SHM is a maximum when  and zero 

when the displacement of the particle is at either of the extreme positions from the centre of 

oscillation, namely, . 

 

Solution 

While the high and low water depth will vary on a daily basis, for the time interval between low 

water at  and high water at , the variation in tidal depths is sufficiently small to allow 

these variations to be approximated by a single sinusoidal function, hence the application of simple 

harmonic motion to the changes in water depth. Over a longer time interval, the approximation 

would breakdown, but for the problem as stated a reasonable estimate for the time at which a ship 

requiring  of water to pass safely can be calculated using simple harmonic motion. 

This example states that simple harmonic motion can be used to approximate the water depth. The 

problem therefore does not involve showing that simple harmonic motion is appropriate, but simply 

requires the application of the solution to SHM to the conditions given in the question. The 

maximum and minimum depths are effectively boundary conditions for the SHM solution: 

 

where the simple harmonic oscillations occur about the mean depth for the water, namely, 

 

The actual depth of water is given by 

 

 

 

 

Example 

The port at Teignmouth is in the Teign 

estuary. A sand bar at the mouth of the 

river Teign prevents ships from entering 

the port apart from when the tides raise 

the water level sufficiently to allow ships 

to pass over the sand bar and into the 

port. 

The minimum and maximum water level 

due to tidal influences for a certain day 

is known to be  at  hours 

and  at  hours, respectively. 

By modelling the water level at the sand 

bar as varying according to simple 

harmonic motion, estimate the earliest 

time after low tide a ship requiring a 

depth of  can cross the sand bar and 

enter the port. 
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The centre of oscillation for the SHM is , and the maximum displacement of the water from 

the mean depth is the amplitude for the SHM . 

These boundary conditions for the simple harmonic motions can be expressed in terms of 

displacement from the centre of oscillation for the water where  corresponds to low water 

and time is expressed in minutes. Since low water occurs at , high water occurs 

 after low water or  after low water, thus 

 and  

A complete oscillation would cause the water to change for low water to high water and back to low 

water again, therefore the time period for the SHM will be twice the time to go from low water to 

high water. The time period  for the SHM is . 

The relationship between  and the time period is , therefore . 

The SHM solutions will be completely determined once the phase shift  is fixed. The phase shift 

establishes the displacement when  and since  

 

Therefore 

 

The time at which a ship requiring  of water to pass over the sand bank is obtained from the 

equation 
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Since time is measured from low tide at , the ship must wait at least  

before crossing the sand bar. The earliest time the ship should attempt to enter the river is 

estimated to be . 

Circular Motion 
Newton’s First Law of Motion states: 

Every body remains stationary or in uniform motion in a straight line unless it is made to change 

that state by external forces. 

Thus, unless an external force acts on a particle, the path of the particle is that of a straight line. 

Whenever a particle deviates from moving in a straight line a force must act upon the particle 

therefore a particle moving along the circumference of a circle must have a force acting causing the 

circular motion. 

Mathematical Background 
The following topics are relevant to the mechanics of a particle moving in a plane. These subjects 

represent the technical aspects of mathematics which help an understanding of the physics of a 

moving particle. It is therefore useful to refresh these subjects to aid the mechanics discussion 

which follows. 

Polar Coordinate System 

Contrary to popular belief, mathematics is designed to make problems easier to solve. The 

mathematical techniques introduced in this section are only introduced to achieve the goal of 

simplifying mechanics problems. For example, the Cartesian equation for a circle of radius  is 

 

When the Cartesian coordinate system is replaced by 2D polar coordinates, the same equation is 

simply 

 

Studying polar coordinates is therefore an appropriate subject for anyone considering the motion of 

a particle following a circular path. 
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2D Cartesian coordinates are defined with respect to two directions, the x-axis and the y-axis, 

specified to be at right-angles to each other such that the y-axis is obtained from the x-axis by 

rotating the x-axis through in an anti-clockwise direction. A pair of numbers  is used to 

identify a position in a plane representing the distance  from the origin in the direction of the x-

axis coupled with a distance  from the origin in the y-axis direction. The intersection of lines 

parallel to the axes and located by these distances from the origin define the position specified by 

the Cartesian coordinates . 

The same location in a 2D plane can be specified relative to the same origin by defining an initial line 

and a point at the origin known as the pole from which the initial line emanates in the direction 

specified by the x-axis in the Cartesian coordinate system. The same position with Cartesian 

coordinates  is defined by specifying two polar coordinates with respect to the pole and initial 

line as distance of the point from the pole  and the angle  between a line drawn from the pole to 

the point makes and the initial line measured in an anti-clockwise direction. 

 

 

The relationship between the Cartesian coordinates  and the polar coordinates  are 

derived from the geometry of a right-angled triangle, namely, 

 

 

  

 

 

 

  

Polar Coordinates 

 

 

 

 
 

 
Cartesian Coordinates 
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and 

 

 

With these relationships between Cartesian and polar coordinate systems the equation for a circle 

of radius  in Cartesian coordinates  and  can be expressed in terms of polar coordinates  and  

as follows: 

Equation of circle 

 

Substitute  and  

 

Using  and  the simplest of expressions for a circle of radius  is 

 

 

 

 

 

A particle mass  moving in a vertical 

plane constrained by a light rod of 

length  to a fixed point follows a 

circular path is also described in polar 

coordinates by the equation . 

The difference between horizontal 

motion in a circle and vertical motion 

in a circle is gravity acts in the same 

vertical plane as the motion of the 

particle. Gravity therefore performs 

work on the particle with time. 

 

 

 

A particle mass  attached to an end of 

a light inextensible string of length  

moving on a smooth horizontal surface 

constrained by the string attached to a 

fixed point follows a path described in 

polar coordinates by the equation 

. The pole is taken as the point at 

which the string is attached to the 

surface. 
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Polar Coordinates and Motion 

A particle moving in a plane is described using Cartesian coordinates  by two functions of time, 

 and . Similarly, when using a polar coordinate system the same location for a particle in a 

plane is described by functions of time specifying how the polar coordinates  change with 

time, namely,  and . 

The position vector for a particle changing with time is either 

 

or placing the pole at the centre of the circle and the initial line in the direction of the  unit vector 

and using  and  

 

The components of the position vector for a particle is therefore expressed as a function times a 

function of a function, that is, of the form 

 

and as a result, when differentiating the components of the position vector to obtain the velocity 

vector, the derivative is obtained by applying the rules for differentiating products and the chain 

rule 

 

and 

 

Thus, when expressed in polar coordinates the position vector for a particle yields the velocity of 

the particle on differentiation with respect to time as follows. 

 

Using Newton’s notation , 

 

For motion in a circle of radius , , therefore for circular motion 
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The quantity  is the rate of change of angle with time and is referred to as the angular speed of 

the particle. Thus for circular motion with radius , the speed of the particle is . 

The direction for the velocity of a particle moving in a circle might reasonably be expected to be in 

the direction of the tangent to the circle. Since the tangent line to a circle is at right-angles to the 

diameter line passing through the point of intersection with the tangent line, the position vector of 

the particle for the origin placed at the centre of the circle should be perpendicular to the velocity 

vector. 

The vector product or dot product of two vectors  and  is defined as  

 

Two non-zero vectors are orthogonal, that is at right-angles, if and only if . Therefore the 

dot product of the position vector relative to the centre of motion and the velocity vector should be 

zero. 

Since  

 

and 

 

 

Therefore the direction of the velocity vector is at right angles to the line connecting the particle to 

the centre of rotation. 

The acceleration of a particle moving in a circle of radius  is obtained by differentiating the velocity 

vector. Again using the product and chain-rule for differentiation: 

 

 

 

Since the unit vectors in the direction of the position vector and the velocity vectors are 

 

the acceleration can be expressed using these two orthogonal components as 
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The velocity unit vector  is in the direction of the tangent to the circle traced out by the motion of 

a particle, and the magnitude for the component of acceleration in the direction of the tangent is 

.  

The component of acceleration in the direction of the position vector for the particle (unit vector ) 

shows that an acceleration of magnitude  must act on the particle for the motion to trace 

a circle of radius . The minus sign indicates the acceleration responsible for the circular motion acts 

towards the centre of the circle. 

For a particle of mass  attached by a string causing the particle to move in a circular path of radius 

 with angular speed  radians per second, in the absence of an external force, the tension 

 Newton in the string must be  

 

Since the speed on the particle is given by , therefore 

 

For circular motion in a horizontal plane, the resultant force in the vertical direction must be zero. 

The only force acting on the particle is the force causing the circular motion, which acts at right-

angles to the direction of motion. Since the line of action of the force and the direction of motion 

are at right-angles to each other the force does no work and therefore a particle moving in a 

horizontal plane experiences no change to the speed of the particle. These statements can be 

expressed mathematically using Newton’s second law of motion: 
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Applying Newton’s second law: 

 

Since  and  are perpendicular unit vectors Newton’s second law dictates 

and  

Assuming  and , this implies . Thus, for circular motion in 

the absence of an external force, the rate of change of angle with time is constant. Since the speed 

of the particle  is given by , the speed is therefore constant too. 

For circular motion in the vertical plane, gravity acts as an external force to the circular motion of 

the particle. Circular motion in the vertical plane is a closed system only when gravity is included 

and within this closed system energy is conserved, therefore the motion in a vertical plane gains in 

kinetic energy of the particle are achieved through work done by gravity. 

For motion in a conservative force field, of which gravity is an example: 

 

For horizontal circular motion with no external forces there is no change in potential energy for the 

particle, hence  

 

One further point regarding a particle moving in a circular path without external forces, the force 

required to cause the circular motion is always directed towards the same point and therefore 

taking moments about the centre of rotation yields zero moment (the line of action of the force 

passes through the centre of rotation and therefore the distance from the centre to the line of 

action of the force is zero, hence the moment about the centre is zero). The force constraining the 

particle to move in a circle does not cause the particle to change the angular speed of the particle 

about the centre of rotation. This geometric observation about moments is algebraically stated 

above in the expression  derived for motion in a horizontal circle. 

 

 

 

 

 

For circular motion in the horizontal 

plane: 

 Resolving vertically: 

Resolving radially: 
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Examples of Circular Motion 
While a string is an obvious means of constraining a particle to move in a circular path there are 

many examples of technological importance in which circular motion is performed. Not least is the 

near circular motion of the Earth around the Sun or a geostationary satellite carefully positioned in 

orbit around the Earth so television signal can be beamed to fix locations at the planet surface; both 

trajectories are the result of matching the gravitational force to the force required for circular 

motion. 

 

A double focusing magnetic sector mass spectrometer used by the semiconductor industry works 

based on balancing forces acting on charged particles causing curved motion for charged particles. 

In simple terms, only those charge particles with precise characteristics are allowed to move in 

circular paths. These circular paths are constrained by forces first from an electrostatic force field 

followed by a magnetic force field. Together these two circular motions allow only certain mass of a 

particle to reach the detector. The motion of ions in a double focusing mass spectrometers used in 

practice are more involved than circular paths, but as a basic model for the apparatus circular paths 

illustrate the principle. 

When a car or a bicycle follows a circular track, the force allowing the circular motion is that of 

friction  between the wheels and the track. While a string attached to a fixed point and a particle 

provides a physical connection between the force and the resulting circular path, in the case of 

friction the force is localized at the point of contact between the road and a wheel, but logically the 

motion is constrained to a circle of radius  determined by the balancing of the frictional force to 

the centripetal force  required for a circular trajectory. 

 

 

 

 

 

 

Force due to radial electrostatic field strength  

acting on a charged particle with charge  is  

Force for a circular path of radius  is . 

Only particles with speed  and mass  such that  

exit the electrostatic sector apertures. 

 

Electrostatic Sector 
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Example 

 

Two particles  and  are connected by a light inextensible string which is threaded through a 

smooth tube of length . The tube is fixed to a smooth horizontal table with a hole positioned so 

that the tube is perpendicular to the table surface and particle  hangs vertically beneath the table. 

Particle A is set in motion following a circular path on the horizontal table with constant angular 

speed  such that particle  is in a state of equilibrium. The mass of particle  is  and the mass of 

particle  is . 

1. Assuming the string is sufficiently long to avoid  touching the table bottom, show that 

particle  remains in contact with the table provided . 

2. Show that at the point particle  is about to leave the table the radius  of the circular path 

is given by . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The smooth tube can be modelled as 

a ring fixed at a position  through 

which the string passes. 

Given that particle  is suspended 

below the table in equilibrium, the 

forces acting on particle  must sum 

to zero. The two forces acting on 

particle  are the tension from the 

inextensible string and gravity, thus 

resolving vertically for particle : 

: 

From the geometry for the string 
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Since the string passes over a smooth ring the tension acting on particle  is the same as the tension 

acting on particle . 

While particle  is in motion, the motion is only in the horizontal plane and therefore the 

component of force in the vertical direction must be zero. Resolving forces acting on particle  in 

the vertical direction yields: 

: 

 

Since particle  moves with constant angular speed , the component of force acting towards the 

centre of motion is constant in magnitude and equal to , where  is the radius for the circular 

motion. 

Resolving in the radial direction with respect to the centre of rotation : 

 

Equation (2) can be expressed as 

 

Dividing Equation (3) by Equation (4) yields 

 

and since  

 

For particle  to be in contact with the horizontal surface , therefore  

 

Using the equilibrium state of particle , Equation (2) is rewritten using Equation (1) in the form 

 

Thus when , the point at which particle  is about to leave the horizontal table surface, 
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Example: Motion in a Vertical Circle 

A particle of mass  is attached to a light inextensible string of length . The other end of the 

string is fixed to a point . The particle is held at the same height as the point  with the string held 

taut before an impulse causes motion for the particle in a vertical plane with initial speed . 

Determine an expression for the velocity  of the particle in terms of the initial speed 

, the acceleration due to gravity , the string length  and the angle  

between the string and the horizontal line passing through  and the initial position for the particle. 

 

Applying conservation of energy the change in kinetic energy must be equal to the change in 

potential energy. 

 

where  is the vertical displacement of the particle during the motion to a point making and angle  

with the horizontal. The negative sign for the term  indicates kinetic energy is lost for positive 

vertical displacements. Since  

 

  

 

 

 

 

  
 

Since the particle is moving in the 

vertical plane, the angular speed is 

not constant and the acceleration 

when resolved radially and tangentially 

is of the form 

Resolving in the two perpendicular 

directions  and  allows the problem 

to be addressed using a natural pair of 

orthogonal directions for circular 

motion. Such a choice is analogous to 

resolving perpendicular and parallel to 

an inclined plane. 

 

 

 

 

 

 

Since , 
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As an alternative approach, the work done can be calculated using the following argument, the 

merit of which is the use of a negative sign for the work done is automatically included. 

Consider the motion of the particle in a circle in terms of radial and tangential directions. These two 

directions are perpendicular therefore the work done by the forces acting on the particle is 

obtained by summing the product of the component forces in these directions with the 

displacement in these directions. The advantage of choosing the radial and tangential directions lies 

in observing  for circular motion. That is, the particle always remains the same distance from 

the pole positioned at . Since the displacement in the radial direction is zero, the work done in the 

radial direction is zero too, so all that remains is to calculate the work done in the tangential 

direction. The component of force in the tangential direction is 

 

and, for small changes in angle, the displacement in the  direction is , thus 

 

 

If these products of force times small steps are summed to approximate the work done between  

and an angle , moving to the limit as  we obtain the integral 

 

Thus, the same result is obtained, but by applying integration techniques for polar coordinates from 

FP3, the sign in the energy equation is recovered from the mathematics. 
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To further illustrate the uses of FP2 and differential equations, the same problem can be solved 

directly from Newton’s second law of motion applied to the two orthogonal directions  and . 

Resolving the forces: 

The component of force in radial direction is 

 

The component of force in tangential direction is 

 

Applying Newton’s second law of motion 

 

Therefore two equations are obtained 

 

and  

 

 

Let , then 

 

Therefore the differential equation is transformed to a variable separable equation as follows 

 

 

 

Now , therefore applying the initial condition  ,  the constant  is determined as 

follows. 

 

Therefore substituting for C and  the solution previously obtained is recovered, namely, 
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