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Matrices and Eigenvectors 
It might seem strange to begin a section on matrices by considering mechanics, but underlying much 

of matrix notation, matrix algebra and terminology is the need to describe the physical world in 

terms of straight lines. These straight lines may be the optimum axes for describing rotation of a 

rigid body or a desire to support a theory involving a relationship between two quantities such as 

the normal reaction force and the force of friction for a static body in contact with a surface. The 

former not only involves matrix notation to describe the moment of inertia of a rotating rigid body, 

but also involves finding eigenvalues and eigenvectors of matrices. 

Matrices also appear in atomic structure calculations where approximate solutions for electronic 

energy levels for atoms with multiple electrons are achieved by expressing the problem in terms of 

matrices for which, once again, eigenvector and eigenvalues must be calculated. 

Linear relationships between physical quantities are numerous, from Ohm’s law relating electric 

current in a circuit to the Voltage, to Hooke’s law relating the force exerted by a spring to the 

extension of the spring from the natural length of the spring. Matrix algebra and again eigenvectors 

for matrices are fundamental to assessing experimental data supporting these laws. An experiment 

performed to demonstrate the validity of either Ohm’s or Hooke’s law involves setting a value and 

measuring a response for different values. In the case of Ohm’s law the value set might be the 

voltage applied to a copper wire and the response is measured by taking a reading for the current 

through the wire. Both setting the voltage and reading the current are subject to errors so although 

according to Ohm’s law if the measured current is plotted on a graph against a range of applied 

voltages a straight line should result; the errors in the measurement will cause the pairs of 

experimental data to lie close to but not necessarily on the expected line. To verify a linear 

relationship between current and voltage, a line of best fit is drawn. Sixth form statistics describes a 

method for calculating the line of best fit in the form of a regression line without the use of matrices, 

however an analysis in terms of matrices motivates much of the linear algebra studied at university 

and used in practise in many areas of science and engineering. 

All of the above examples lead to a particular type of matrix known as a symmetric matrix. A focus 

will therefore be placed on properties of symmetric matrices in the following discussions. Symmetric 

matrices have special properties which are at the basis for these discussions and solutions. The 

subject of symmetric matrices will now be examined using an example from linear regression. 

Statistics 1: Linear Regression and Matrices 
The concepts and terminology for matrices will be developed using an example from statistics. The 

technique for computing the line of best fit for a set of measurements provides an example where a 

 matrix is used to calculate the two coefficients for a straight line which approximates these 

two sets of data when plotted as  coordinates on  Cartesian coordinate axes. 

Before considering the use of matrices in linear regression, an example solved with a non-matrix 

approach provides an introduction to the linear regression subject and sets the context for the 

solution by matrices. 

Example from Mechanics 3/Physics: 
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A class of sixth form physics students are each given a spring of equal length and same construction. 

Each student is provided with a weight ranging between  and . The students are asked to 

fix one end of the spring to a support with the spring hanging vertically below the support point, and 

to measure the extension of the spring from the unloaded length resulting from attaching a weight 

to the free end of the spring. After completion of the measurement the results for the class are 

tabulated and plotted as a scatter plot of weight against spring extension. 

Extension (mm) 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Weight (N) 16 11 14 25 20 27 34 29 40 43 42 49 44 47 58 61 56 

 

The problem is to calculate the line of best fit and therefore verify the value of Young’s modulus for 

the springs. 

According to Hooke’s law, the expected behaviour for a spring within the elastic limit is 

 

where  is Young’s modulus,  is the natural length of the spring and  is the extension of the 

spring due to the tension . 

As part of the experiment, the natural length  of the spring is established before a variety 

of loads in the form of known weights are applied to the spring and each time a load is applied the 
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displacement  is measured from the initial position for the spring. The variation in the data 

points evident in the scatter plot is due to errors in determining the values for  using a ruler to 

measure displacement, uncertainty is the true value for the weights, the uncertainty in , the 

assumed equivalence for each of the springs used in the class experiment and potentially other 

factors altering the measured-value from the expected value in the experiment. 

A sixth form physics student would plot the table of results on graph paper and by eye draw a line 

through the data points plotted on the scatter diagram. The gradient of the line would provide the 

information needed to calculate Young’s modulus for the springs. Mathematics provides an 

alternative approach for determining the line of best fit based on a least squares criterion applied to 

the tabulated data. 

Non-Matrix Approach to Regression 

The following argument leads to a mathematical procedure for calculating the line of best fit for a 

set of experimental data. Consider the table of experimental results: 

Extension (mm) 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Weight (N) 16 11 14 25 20 27 34 29 40 43 42 49 44 47 58 61 56 

The table of results is viewed as 17 pairs of coordinates  

Extensio
n  

                 

Weight                   

The most common way to summarise a set of data is to offer the mean average. In this case, there 

are two sets of data for which two means can be calculated. 

 

It would seem reasonable to assume the line of best fit should pass through the coordinate for the 

mean . If it is assumed the line of best fit passes through the mean when plotted on the scatter 

diagram then the coordinate  must satisfy the equation  or 

 

 

 

If the line of best fit is defined to be of the form 

then the problem is that of determining the 

parameters  and  which define the intercept 

and gradient for the line of best fit. 
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Assuming the mean coordinate lies on the line of best fit provides one equation relating the two 

unknowns  and . A second equation must be found which relates these two parameters. 

The mean for a set of values provides a number which is representative of the central value. The 

spread within the set of values is measured by the variance. The variance for a set of numbers such 

as the  in the above table is given by 

 

The variance is obtained by summing the squares of the differences between the values  from the 

mean . Following the model for the variance, the line of best fit can be chosen so that the sum of 

the squares for the differences between the values  and the corresponding point on the line of 

best fit is a minimum, namely, 

 

If the parameters  and  are chosen to minimise , the spread of the points in the scatter diagram 

from the line of best fit will be minimised. 

 

Substituting Equation (1) into Equation (2) yields 

 

 

 

The values  are called 

the residuals and are depicted graphically 

as vertical lines between the data points 

and the line of best fit. 

The line of best fit is therefore considered 

to be the line which minimises the sum of 

the squares of the residuals. 
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Using the notation  

 

 

Equation (3) is a quadratic in terms of . The minimum for the quadratic is obtained when  

 

 

When calculating the quantities  and  it can be shown that 

 

and 

 

The problem of mathematically fitting a straight line through a set of data points is therefore 

reduced to calculating the mean values  and , and the two summations  and  from the 

tabulated experimental data. 

For the particular data set measured by the physics students, the line of best fit is computed from 
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Therefore  and . The line of best fit in a 

least squares sense is 

 

Hooke’s law ( ) predicts the force in Newtons for an extension measured in metres. 

Since the scatter diagram plots Newtons against millimetres, the gradient for the line of best 

fit 3.03 is measured in , therefore the value for Young’s modulus for 

the springs is estimated by the physics students to be 

 

The problem of finding the line of best fit to a set of data points has so far been approached 

in terms of non-matrix mathematics. The same problem can and will now be investigated in 

terms of matrix mathematics. 

Matrix Approach to Linear Regression 

If the measurements made by the physics students were without error, to calculate a straight line 

representative of the relationship between the force and corresponding extension would require 

only two measurements. Hooke’s law actually assumes the line passes through the origin and 

therefore if Hooke’s law is taken on trust then only one measurement is required. For the sake of 

argument it will be assumed a general equation  for a straight line is required as used in 

the above discussion. If two forces  and  with corresponding measurements for the spring 

extension  and  are used then a pair of simultaneous equations can be written as follows: 

 

Assuming  the values for  and  are obtained by calculating the inverse matrix for 

 , namely, 

 

When many measurements are performed using different forces to extend the same springs the 

result is not two but many simultaneous equations. For example if three measurements were 

performed the system of equations would appear as follows. 
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The problem is expressed as a  matrix for which no inverse is possible. This is mathematically 

stating that no one line can pass through all three points when plotted on a scatter diagram. 

 

The matrix corresponding to these three simultaneous equations in two unknowns can be viewed as 

a linear transformation . That is given a 2D vector such as , the matrix  

provides a means of calculating a 3D vector as follows: 

 

The linear regression problem is to find a linear transformation  so that the three 

simultaneous equations reduce to two simultaneous equations which can be solved in principle 

using an inverse matrix equivalent to Equation (4). 

It can be shown that the matrix for the linear transformation  is the transpose of the matrix 

, namely , that is a  matrix formed by entering the rows of the 

original matrix into columns to form the transposed matrix. The transpose matrix  is a 

recipe for converting a 3D vector into a 2D vector. The transformation can be used to convert each 
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column of the original matrix into 2D vectors and the right-hand 3D vector into a 2D vector as 

follows. 

 

and 

 

Therefore the system of three equations in two unknowns 

 

is reduced to a 2D problem as follows. 

Multiplying both sides of the matrix equation by the transpose matrix yields 

 

 

The matrix is an example of a symmetric matrix. A matrix  is symmetric if and only if 

the transpose of the  is equal to , or in matrix notation, if  then  is symmetric. Given the 

matrix , the inverse matrix is . To find the inverse of  requires 

the calculation of the determinant for . Since , the inverse is 

given by 

 and is such that . Hence 

 

 and  

Therefore 

 

These steps in matrix algebra therefore lead to the line of best fit defined by  and 

. 
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Using three data points to compute the line of best fit is clearly in this case a poor way to determine 

Young’s modulus for the springs. To include all 17 measurements into the calculation the problem is 

exactly the same but for the use of 17 simultaneous equations rather than three. 

 

 

 

Let  then  and 

 

Therefore 

 

Thus the gradient for the line of best fit is . 

Linear Transformations 

When considering the problem of linear regression in terms of matrices, a reference to linear 

transformations was made on more than one occasion. Since the discussion thus far has been 

concerned with fitting a line to a set of data points plotted on a Cartesian coordinate system, one 

Using the non-matrix approach: 

 

 

 

 

 

 

 

and  
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might be forgiven for associating the term linear in linear regression with the use of a line of best fit. 

In fact the term linear does not relate to the use of a line of best fit. The techniques of linear 

regression are equally appropriate for finding, should it be required, a quadratic of best fit of the 

form 

 

where three parameters are chosen to allow a quadratic polynomial to approximate a set of data in 

the least squares sense. The use of the term linear indicates the parameters ,  and  appear in the 

fitting function as a power of one, i.e. ,  and . By way of contrast, a fitting function of the form 

 

is not linear in the parameter  since  appears in algebraic terms of the form  and  and 

therefore does not fall directly into the mathematics of linear regression. 

Provided the parameters used to obtain a function of best fit appear only with a power of one in the 

functional form the problem can be solved using techniques from matrix algebra. In abstract terms, 

a matrix and the algebra of matrices is an example of a linear transformation from one set of vectors 

to another satisfying the following relationships, here expressed in terms of vectors in : 

 

 

 is the symbol used to represent three dimensional space and the linear transformations above 

defined for vectors in three dimensional space are a mapping from  to , written . A 

linear transformation such as the one used in the above linear regression example based on three 

simultaneous equations maps , meaning all 3D vectors after transformation through  

lie in a 2D plane of 3D space which includes the origin. Since  includes the origin , a linear 

transformation obeying the rules (a) and (b) dictate 

 

Thus the origin is mapped to the origin by a linear transformation. Therefore the transformation 

 maps 3D vectors to a 2D plane including the origin. 

Given that matrices are a representation for a linear transformation it is clear that the commonly 

used 2D transformation of rotation, reflection and enlargement are all examples of linear 

transformation, as in each of these cases the origin is mapped by the corresponding matrix to the 

origin, whereas a translation is not a linear transformation since the origin is not mapped to the 

origin by a translation and so cannot be represented by a matrix in the context of matrix algebra. 
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Eigenvalues, Eigenvectors and Linear Transformations 

The mapping  defined by the matrix formed from the set of 17 data pairs 

 

is used to transform the columns of  expressed now in matrix notation as  yields the  

matrix 

 

 is an example for a symmetric matrix formed by matrix multiplication which has the special 

property required to calculate the line of best fit for the set of experimentally determined data 

points. While the line of best fit can be calculated by the use of an inverse matrix, the properties of 

symmetric matrices can be used to calculate the inverse using a technique based on characteristic 

vectors associated with a symmetric matrix. From a practical perspective finding the inverse of  

using a computer can be difficult and by considering the eigenvectors for the matrix  some of the 

practical difficulties are overcome. 

An eigenvector of a matrix is a vector which when transformed using the matrix results in a scaling of 

the original vector. The scale factor is called the eigenvalue corresponding to the eigenvector. 

Eigenvectors are non-zero although zero is a valid eigenvalue. For a  matrix  an eigenvector 

 with eigenvalue  must satisfy the equation 

 

That is, transforming the vector  using the matrix  simply changes the magnitude of the vector. 

For example 

 

Thus for the matrix ,  is an eigenvalue corresponding to the eigenvector . 
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An eigenvector represents a direction or a line passing through the origin for which any point on the 

line is transformed by matrix multiplication to another point on the same line. 

To calculate the eigenvalues and eigenvectors for a matrix  Equation (5) is rearranged as follows. 

 

Given  is of the form  

 

 

Equation (6) has either one solution, namely, , which is forbidden from being an 

eigenvector or the matrix represents the equation of two lines with identical gradients passing 

through the origin. In matrix terms, this geometric statement is equivalent to the statement the 

matrix  is singular, which in turn implies . 

Thus  is a quadratic in  yielding at most two eigenvalues and eigenvectors. 

For example, to compute the eigenvalues for the symmetric matrix  the problem reduces 

to solving a quadratic equation corresponding to  

 

So there are two distinct eigenvalues  and . The eigenvectors are calculated as a vector 

with the same direction as the line  for each of the two eigenvalues. For 

 the gradient of the line is – , therefore an eigenvector  is such that . Let 

 then  and an eigenvector corresponding to  is . Similarly, for 

 the gradient of the line is – , therefore an eigenvector  is such that  which is 

clearly satisfied by the vector  or the vector . . There are an infinite number of points on a line 

through the origin and therefore there are an infinite number of eigenvectors. The matrix  

maps the eigenvector  to the eigenvector  and  is mapped to , all of which are 

eigenvectors. Since it is the direction for the eigenvector that determines this scaling of an 

eigenvector by the eigenvalue, only the direction for the eigenvectors is important when describing 

the action of the matrix on this set of vectors. The direction for a vector is defined by the 

corresponding unit vector and so it is conventional to express eigenvectors in the normalised form of 

a unit vector. 

A unit vector, also referred to as a normalised vector, is obtained by dividing each component of the 

vector by the magnitude of the vector. The magnitude for a vector is the square root of the sum of 
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the components squared. For the current example, the unit vector corresponding to the eigenvalue 

 is calculated from the eigenvector , which has magnitude , is  and so 

the normalised eigenvector corresponding to  is . 

These normalised eigenvectors are of interest to the “line of best fit” problem for the following 

reasons. 

Two matrices can be formed from the eigenvalues and the normalised eigenvectors: 

 and  

The matrix  formed from the normalised eigenvectors is an example of an orthogonal matrix. A 

square matrix  with the property  is called an orthogonal matrix. 

 

Therefore 

 

For a symmetric matrix with positive eigenvalues, the matrix formed from the normalised 

eigenvectors is orthogonal because the eigenvectors are perpendicular. Clearly for this specific 

example , a very convenient property when attempting to invert a matrix. 

The matrix  formed from the eigenvalues listed along the leading diagonal in the same order as the 

eigenvectors populate the columns of  is again simply inverted provided the eigenvalues are 

nonzero as follows. 

Given  the inverse  is obtained by replacing the diagonal elements of  by 

the reciprocal of the eigenvalues which can be demonstrated as follows. 
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The significance of these matrices  and  to the original problem lies in the following observation. 

Given the eigenvalue equations of the matrix  

 and  

these two matrix equations can be rewritten as 

 

Now 

 

therefore 

 

Since  and  

 

And since a diagonal matrix is symmetric  therefore  

 

If  is an orthogonal matrix then  hence 

 

and 

 

For the symmetric matrix 

 

with associated matrices 

 and  

the inverse is given by 
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Apart from providing a method for finding the inverse matrix, determining the eigenvectors and 

eigenvalues for the symmetric matrix  provides a means of understanding the nature 

of the transformation performed by  in terms of  and . The matrix  is a rotation about the 

origin by  radians while  is an enlargement of  in the first coordinate and  in the second 

coordinate. Therefore  

 

implies the transformation  is a rotation about the origin of  radians, followed by an enlargement, 

followed by a rotation by  about the origin. 

 

 

 
 

 

Step 1: Transformation of 2D shape 

using matrix 

Rotation about origin by  radians 

 

 

Transformation of 2D shape 

using direct application of matrix 
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The linear regression problem using 17 experimental measurements reduces to finding the inverse 

of the matrix . The matrix  is also a symmetric matrix and a similar 

eigenanalysis can be performed for  yielding two eigenvalues and eigenvectors. 

 with eigenvector  

and 

 with eigenvector  

The orthogonal matrix formed from the normalised eigenvectors for  is 

 

corresponding to the diagonal matrix of eigenvalues 

 

 

Step 3: Transformation of 2D image 

from step 2 using matrix 

Rotation about origin by  radians 

 

 

Step 2: Transform rotated image 

using enlargement matrix 
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allows the inverse of the symmetric matrix  to be calculated 

 

Note, an inverse based on the matrices  and  is only possible because of the special properties of 

the symmetric matrix  causing  to be orthogonal and eigenvalues all positive. 

The line of best fit is again calculated using 

 

yielding the same result, namely the gradient for the line of best fit is . 

The matrix  corresponding to the normalised eigenvectors of  is in this case a reflection rather 

than a rotation. 

 

  

 

 

 

Matrix  

represents a reflection in the 

line through the origin making 

an angle 

with the x axis. 
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Application of Eigenvectors and Eigenvalues to Image Processing 

Images and Vectors 
Images are, in essence, a two dimensional array of numerical values mapped to a range of colours so 

that spatial information can be displayed. At first sight images may seem to have little to do with 

vectors, let alone 2D vectors, yet interpreting images as vectors is a very useful way to improve an 

understanding for image data.  

One way to make this jump from a pictorial perspective to a 2D vector representation for images is 

to interpret two images as lists of coordinate values, where the intensities from one image are 

chosen to be the x-coordinates while the y-coordinates are obtained from the second image. These 

pairs of coordinate values are precisely the intensities from common pixel locations within these two 

images. Rather than relying on colour to visualise these images, these image data are represented by 

a set of points plotted in a 2D plane. Thus from a pair of images numerous coordinate pairs are 

obtained in a 2D plane and each coordinate pair provides a 2D position vector. 

 

Figure 1: These two images are plotted in a 2D plane by drawing a point for each pixel. The x-coordinate for the point is 
taken from the intensity for the same pixel position in the top image as the bottom image, from which the y-coordinate 

is taken. 

Given a plot of points in a 2D plane the first assessment often made is to calculate a linear regression 

line. The objective typically is to test for a linear relationship within the scatter plot and attempt to 

categorise numerically the strength of any linear relationship. If a linear relationship does exist 

within the data then an obvious transformation which could be applied to the 2D data set is to 

rotate the scatter plot so that the line of best fit is now the x-axis. Images transformed by such a 

rotation would then represent, in some sense, an image containing the variation along the line of 

best fit, while the orthogonal direction is an image of no variation in the direction of the line of best 

fit. 

Whilst linear regression remains an option for a pair of images, the image data can be assessed in 

terms of linear relationships using a similar approach to linear regression, but where a line of best fit 

is determined by performing a rotation about some origin selected for a particular distribution of 
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points. The angle of rotation is chosen to minimise the sum of squares for the -coordinate following 

the rotation transformation. The origin could be selected to be the minimum point in terms of 

coordinate values, or alternatively the mean average coordinate could be the origin of choice.  

The reason for altering the definition for the line of best fit from the standard regression line to the 

problem now discussed is linear regression assumes one coordinate is an independent variable, 

while the second coordinate is a value measured in response to the value set for the first coordinate. 

That is, for simple regression, the line of best fit can be reasonably assumed to be that obtained 

from minimising the sum of squares in the original -coordinate alone. For the case of two images 

the intensities are measured independently of each other, and so the choice for  and  coordinates 

is not so natural and more importantly the line of best fit should not depend on the choice for 

assigning images to the  and  coordinates in the scatter plot. Minimising the sum of squares for 

the transformed -coordinate involves both the original  and  coordinates and therefore removes 

the bias towards one image over the other introduced by considering the original -coordinate 

alone. 

 

Figure 2 The image intensities plotted as a scatter plot for the images in Figure 1 showing the line of best fit. A 
transformation for these data as depicted by a scatter plot representing a rotation about the mean average coordinate 

pair required to align the line of best fit with the x-axis. 

Line of Best Fit Revisited 
Given two images consisting of intensities at each pixel position these intensities can be expressed 

as two lists  and   of numerical values. From these two 

lists  and  a  matrix can be defined. 

 

The problem is to determine a linear transformation matrix  such that 

 

where  is a minimum with the constraint, to ensure the spatial arrangement of the 

points in the scatter plot is preserved, . 
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The constraint  is achieved by defining the transformation in terms of an angle  with 

respect to the positive direction of the  axis about the origin characterising a rotation. 

 

Thus . 

Since 

 

 

 

Using the notation ,  and  

 

 

 

To determine the minimum for , . 

Therefore, 

 

 

 

and for  

Interestingly, if the image data are identical in length (  then the required 

transformation is a rotation by ,the direction for the rotation only depending on the sign of . 

The relationship between the required rotation angle and eigenvectors for the covariance matrix can 

be examined by considering Equation (1) written in terms of sine and cosine, and then expressed as 

a quadratic form as follows. 
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Therefore in quadratic form the function of  is written in matrix notation as 

 

The symmetrical matrix  is a covariance matrix formed from the image data, the 

eigenvectors of which provide the same angle of rotation required to optimise . Such an assertion 

can be supported by the following analysis. 

The eigenvalues are calculated by finding the roots of the characteristic quadratic polynomial 

formed from 

 

 

 

 

 

The eigenvector corresponding to the eigenvalue  is calculated from  

 

Choosing to calculate the unit eigenvector expressed as  it follows 

 

 

 

Substituting  into 

 

and after rearranging 
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That is, the same angle is available from the eigenvectors of  as is calculated from the optimisation 

steps leading to Equation (2). The result is a prescription for rotating the scatter plot to align the 

maximum variation along the -axis. 

Geometrically, the quadratic form  

 

is the equation for an ellipse  defined with the major axis making an angle  with the 

-axis. The matrix formed from the normalised eigenvectors of  provides the linear transformation 

required to align the scatter plot as shown in Figure 3. 

 

Figure 3: Shape for a ellipse defined by the quadratic form corresponding to the symmetric matrix  before and after the 
data are transformed. 

Transforming the scatter plot by a rotation allows the original images to be transformed to provide a 

new spatial perspective as illustrated in Figure 4. The example illustrates how two essentially similar 

images are transformed by the 2D transformation to one containing the principal features in these 

two images while the second image represents the spatial information not in the first. 

 

Figure 4: Top two images are raw data corresponding to the scatter plot in Figure 3 before rotation. The bottom two 
images represent the transformed data shown in Figure 3 following rotation. 
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These concepts of rotating vectors were used by Jacobi to calculate the eigenvectors for a real 

symmetric matrix. Equation (2), obtained here as a consequence of an optimisation problem, also 

appears as part of the Jacobi algorithm where the same equation provides the means for eliminating 

off-diagonal elements in the real symmetric matrix for which eigenvectors are sought. 

Transformation of Data using Rotations 
The example now considered is a degradation study for a polymer under the influence of x-ray 

exposure. These data provide an example of where data evolves gradually with each measurement, 

and allows the consequences of applying rotations in -dimensional vector space to these -sets of 

spectra to be investigated. 

 

Figure 5: Three stages involving two rotations leading from a scatter-plot in 3D corresponding to 3 raw spectra to the 
equivalent (in a spatial sense) scatter-plot calculated to place the scatter-points along the first coordinate axis. First a 
rotation about the -axis aligns the scatter points around the  plane, followed by a rotation about the -axis to 
located the 3D data points about the -axis. 

The method used to transform these spectra rotates a scatter-plot sequentially about each of the 

other  coordinate axes until the variation in the data is aligned with respect to the first 

coordinate axis. The rotations are calculated to minimize the coordinate values one at a time until 

the scatter points are located close to the first coordinate axis. To illustrate the rotation 

transformations Figure 5 represents three states for a set of points derived from three spectra 

plotted as a scatter diagram. The first scatter diagram (top left) shows the scatter diagram before 

any transformation. The second plot (top right) illustrates the scatter points after rotation about the 

-axis achieved by minimizing the sum of squares for the rotated -coordinate following rotation 
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about the -axis. The result is a scatter of points located close to the -plane. These points now 

located around the -plane are rotated a second time about the -axis resulting in the scatter 

points being located about the -coordinate axis as seen in the bottom tile in Figure 5. Also, the 

consequences for the original spectra at each stage can be seen in each tile in Figure 5. 

Note how the sequence of rotations gathers the variation in these three data into a dominant vector 

leaving the minor variations represented in the other two vectors. 

Given a set of spectra, a sequence of rotations can be used to examine trends in the data set. For 

example, a set of C 1s spectra measured from poly (methyl methacrylate) (PMMA) processed using a 

single pass of rotation transformations equivalent to those illustrated in Figure 5 create an 

alternative perspective for these spectra. Spectra in Figure 6 appear ordered with respect to time 

top-left to bottom-right. PMMA is modified by x-ray exposure causing the relative peak intensities 

for C bonded to O to change relative to C-H chemical state. These changes can be seen in the rotated 

data shown in Figure 7. 

 

Figure 6: PMMA spectra measured repeatedly using the same sample. X-ray damage is evident from the changing C=0 C 
1s peak to high binding energy of the C 1s transition data envelope. 

 

Figure 7: Spectra after transformation. By applying a sequence of rotations the spectra appear as negative and positive 
peaks corresponding to the changes in intensity for the C=O, C-O and C-H peaks in PMMA due to x-ray damage. These 
data are obtained by rotation using the natural chronological order for the spectra. 
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Micro Factor Analysis 
The use of Principal Component Analysis to improve signal to noise in XPS spectromicroscopy has 

been well documented over the last decade. The underlying approach is to perform an eigenanalysis 

using all data simultaneously and trust the significant information within the data set can be well 

represented by a limited number of eigenvectors. As an alternative, the approach adopted by micro 

factor analysis (MFA) is rather than perform an eigenanalysis on the entire data set as a unit, 

individual vectors from within the data are analysed in three dimensional subspaces of the n-

dimensional space spanned by the data vectors. The data vectors are progressively transformed by 

replacing the data vectors by vectors formed from two-dimensional subspaces corresponding to 

principal eigenvectors calculated from three vectors sub-sampled from the data set. The success or 

failure of micro-factor analysis is dependent on the selection of the three vectors used in each step 

in the procedure. 

MFA will be discussed in the context of XPS image data sets and sputter depth profiles, both of 

which can be chosen to best exemplify MFA in terms of outcome. 

Theory behind the use of Principal Eigenvectors 
One reason for considering MFA is the reduced 3D eigenanalysis can be examined in detail and given 

a physical interpretation. 

Given a set of three data vectors , the standard procedure for expressing these three 

vectors as a corresponding set of abstract vectors  is in terms of a singular valued 

decomposition 

 

where 

, ,  and  

 is a diagonal matrix with diagonal matrix elements equal to the square root of eigenvalues of the 

covariance matrix 

 

and  is the matrix formed from the normalised eigenvectors of  ordered with respect to the 

eigenvalues. The non-zero values appear ordered in size along the diagonal of . The MFA 

approximation is simply achieve by replacing the data vector  by the linear combination defined 

by , where and  are determined in the least squares sense. 

The approximation of  by is valid noise reduction step provided the original three vectors 

 are essentially the same vector but for noise. The use of two terms in the approximation 

rather than simply one term  allow for an amount of variation within the data vectors, but if all 

three vectors are significantly different the approximation fails, hence the need for a slowly varying 

sequence of data vectors for MFA to be useful. Note, replacing by an average of the data vectors 

is another least squares solution, but one in which there is no possibility of recovering information 

beyond the value as calculated. MFA could therefore be seen as a more sympathetic mapping 
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 while an average would enforce a mapping of  with, in the event of slightly 

varying data vectors, the ensuing loss of information. 

The use of the covariance matrix  to perform the singular valued decomposition of the data matrix 

 might seem natural in the context of the design matrix used to perform linear least squares fitting 

of target vectors to a data vector. However to improve an intuitive understanding for the process, 

the use of the covariance matrix formed from the data can be viewed in terms of physics in the 

following sense. If each coordinate from the three data vectors are viewed as position coordinates in 

3D space of a unit mass particle, then the moments of inertia for a set of unit mass particles when 

rotated with a fixed angular speed attains a minimum kinetic energy for a specific choice of an axis 

of rotation in 3D space. This problem from classical mechanics is well known and solved using an 

eigenanalysis for the matrix 

 

where 

, , , ,  

and  

 

The formulation for this matrix is based on minimizing the moments of inertia  about a arbitrary line 

 passing through the origin for a particle  with unit mass and position vector . If we 

consider the perpendicular distance  from the point  to the line  with direction cosines 

, then 

 

and since  

L 

z 

y 

x 
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After simplification the moment of inertia for a set of unit mass particles about a line  reduces to 

 

or written as a quadratic form 

 

Thus the problem of finding the minimum moment of inertia, i.e. minimizing the sum of the square 

perpendicular distances by choosing the appropriate direction cosines is that of minimising  subject 

to the constraint  , that is, the constraint ensures valid direction cosines are 

involved in the solution. 

Applying the method of Lagrange multiplier to minimising  subject to  leads to 

the requirement to determine eigenvalues and eigenvectors of 

 

So, having observed the requirement to minimise the sum of squares of perpendicular distances to a 

line yields a minimum moment of inertia for a given distribution of unit mass particles, how does this 

relate to the covariance matrix ? 

The covariance matrix is formed from the data vectors  as follows: 

 

The matrix  is formed from the data vectors where ,  

and  as follows 

 

Therefore 

 

 

If  is an eigenvector of  with corresponding eigenvalue  then 
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and so 

 

Therefore  is also an eigenvector of  with eigenvalue . 

Thus, determining the eigenvectors for  also solves the problem of determining the direction for a 

line by minimising the sum of the squares of the distances to that line. The least squares problem 

solved by working with the eigenvectors of the covariance matrix  is now clear.  

The eigenvalues  for the matrix  are the moments of inertia about the axes of rotation defined by 

the eigenvectors for which the system is in a possible maxima or minima. The smallest eigenvalue for 

 is the minimum moment of inertia for the given system of unit mass particles. The relationship 

between the eigenvalues of  and the eigenvalues of  is essentially an adjustment of the absolute 

values for the eigenvalues for  relative to a new reference value, namely, half the sum of the 

extreme moments of inertia for three particles positioned on the three coordinate axes at distances 

from the origin equal to the magnitude for the three data vectors , respectively. Specially  

 

Further, since the eigenvalues of  are the roots of the characteristic polynomial 

 

The sum of the roots for the cubic polynomial is equal to minus the coefficients of , namely, 

, therefore the three eigenvalues of  (  and ) are such that 

 

Thus the three eigenvalues of  are ,  and . 

A point worth highlighting is the eigenvalues of  are physically significant and represent the values 

for the moments of inertia  about the principal axes. The principal axes are in the directions defined 

by the eigenvectors of , and since if  is a matrix formed from the eigenvectors of  and  is a 

diagonal matrix with non-zero elements equal to the, assumed distinct, corresponding eigenvalues 

of , namely 

 

 then  

 

Thus, the moments of inertia  about an axis with direction cosines  is given by 
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If  is the eigenvector corresponding to eigenvalue  then since the eigenvectors are 

constructed to be orthonormal, that is,  

 

Therefore the moments of inertia about the principal axis with direction is 

 

Covariance Matrix and Least Squares Optimisation 

While moments of inertia provide a physical interpretation for PCA, the common practice of working 

with the covariance matrix  can be understood by following through the logic of minimising the 

sum of squares of the perpendicular distances from each point in a scatter plot to the principal axis 

line. If Pythagoras is used to determine the distance from a point in the scatter plot to a line through 

the origin with direction cosines , the minimisation problem can be expressed as 

follows. 

 

subject to the constraint  

 

 

L 

z 

y 
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  P 

 

 

 

 

This time, applying Pythagoras theorem 

to determining the distance  

Since 
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Each point in the scatter plot has coordinates , therefore 

 

and 

 

The covariance matrix is derived by applying the method of Lagrange multipliers to include the 

constraint , namely the optimisation of the parameters  for the function 

 

Differentiating with respect to  yields 

 

Equating to zero yields 

 

Similarly,  and  provides two more equations as follows. 

 

 

Using , , , , 

 and  and expressing the above simultaneous equations in matrix form 

the eigenvector problem expressed in terms of the original data vectors reduces as follows. 

 

Thus, the covariance matrix  is recovered from the optimisation problem. 

Visualisation of Principal Axes and Principal Component Vectors 
To appreciate the relationship between pixel intensities in an image and the corresponding set of 

unit mass particles, a set of three images can be displayed as a scatter plot where each point plotted 

represents the position of a unit mass particle. The following figure depicts three raw images plotted 

as a scatter plot in a 3D cube. Each pixel from these three raw images provides 3D coordinates for a 

unit mass particle.  
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The distribution for the set of unit mass particles defined by the set of image pixels is an indicator for 

similarity in these images. Three identical non-uniform images when plotted as a scatter plot yield a 

distribution along the leading diagonal of the coordinate cube. Three images representative of noise 

resulting from a uniform signal would produce a spherically symmetrical ball of points when viewed 

as a scatter plot.  

The principal axes plotted on a scatter plot show directions about which the moments of inertia 

takes on extreme values. 

In the following figure, three raw images are displayed together with the MFA enhanced images. To 

illustrate the transformation performed by the MFA procedure scatter plots based on the raw and 

MFA are included. 

 

These three raw images are replaced by MFA images formed by projecting onto the two most 

significant principal directions in the PCA sense of significance. That is, the two directions with 

largest PCA eigenvalues. 

Following processing the entire dataset using the MFA algorithm, the three original images are 

transformed to a set of images in which the variation is reduced, where the variation eliminated by 

MFA processing is assumed to be noise. The enhancement for these three images and the change to 

the pixel distribution is illustrated above. Note how the spherically symmetric scatter plot created 

from the raw images is transformed to an elliptical shape formed from the corresponding MFA 

images. 

As an alternative to image data, a scatter plot constructed using three spectra taken from a sputter 

depth profile displaying the principal axes, proportioned using the extreme values for the moments 

of inertia, show how similar data have a natural direction associated with a system of particles when 

rotation occurs. The minimum moment of inertia for the set of unit mass particles corresponding to 

the three spectra points roughly along the cube diagonal. 
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MFA Applied to Depth Profile Data 
A sputter depth profile is potentially appropriate for MFA, particularly if the data is expected to be 

identical in shape throughout the profile. The example now considered is such a data set, where an 

Auger depth profile in which sodium is monitored provides a suitable test case for MFA. The sodium 

signal in this case study is small compared to the other two elements profiled, and what is more the 

sodium signal is superimposed on large background intensity. Since for pulse counted intensity the 

noise is expected to increase as the square root of the counts per bin, the sodium Auger peak 

measured using the same dwell-time as the other peaks is subject to poor signal to noise by 

comparison. For the sample in question, it was expected the sodium signal would diminish tending 

to zero. A simple analysis based on the raw data failed to convey the expected result to anyone 

unfamiliar with Auger data. 

The following profile presents the result of profiling three elements, namely, oxygen, molybdenum 

and sodium. Apart from apparently including sodium signal greater than the oxygen signal, the 

scaling of noisy sodium before combining with the other two signals in an atomic concentration 

calculation injects noise into the molybdenum trace even though the measurement of the 

molybdenum peak had good signal to noise characteristics. As an attempt to improve the profile 

from the data set as given, only the sodium spectra will be processed using MFA. 
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To illustrate the nature of the problem examples of the three spectra in direct mode are displayed 

below. The sodium peak is clearly poorly defined and small compared to the background signal. 

 

Processing of the Na signal is performed using one eigenvector to perform the MFA step rather than 

two as described in the introduction section. The reason for using only one eigenvector per MFA 

step is the Na spectra are very similar throughout the profile. The following two profiles illustrate 

the improvement in the overall profile even though only the Na spectra are enhanced using MFA. 

 

Note how all profile traces benefit from processing the Na signal only. Scaling a noisy Na signal 

before combining with the better defined Mo and O intensities to form the atomic concentration 

causes the uncertainty in the sodium to appear in all three traces. 

Processing the Na spectra was performed on the direct spectra. Once noise is reduced by applying 

the MFA algorithm to the direct spectra, the resulting sodium spectra are differentiated and moved 



 Copyright © 2012 Casa Software Ltd. www.casaxps.com 

34 
 

to the original VAMAS file contain the raw depth profile spectra. Identical regions are used to create 

the sodium traces for both profiles above so the only change in these profiles is due to the MFA 

alterations to the direct sodium spectra. 

 

Scatter plots for successive spectra in the profile taken from regions with and without sodium 

illustrate how the sodium spectra change before (top plots) and after (bottom plots) MFA treatment. 

The reduction in noise is indicated by the narrowing of the elliptical boundaries about the principal 

axes. 


