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Solving Simultaneous Equations and Matrices 
The following represents a systematic investigation for the steps used to solve two simultaneous 

linear equations in two unknowns. The motivation for considering this relatively simple problem is to 

illustrate how matrix notation and algebra can be developed and used to consider problems such as 

the rotation of an object. Examples of how 2D vectors are transformed by some elementary matrices 

illustrate the link between matrices and vectors. 

Consider a system of two simultaneous linear equations: 

 

Multiply Equation (1) by  and Equation (2) by : 

 

Subtract Equation (4) from Equation (3) 

 

Making  the subject of the equation, assuming : 

 

Similarly, multiply Equation (1) by  and Equation (2) by : 

 

Subtract Equation (7) from Equation (8) 

 

Making  the subject of the equation, assuming : 

 

Equations (6) and (10) provide a solution to the simultaneous Equations (1) and (2). Introducing 

matrix notation for the simultaneous Equations (1) and (2) these solutions (6) and (10) form a 

pattern as follows. 

 

Define the matrix  then . Then introduce two matrices formed from  

by first replacing the coefficient to  in Equations (1) and (2) by the right-hand side values, then 

forming the second matrix by replacing the coefficient of  by the same right-hand side values yields 
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 and  

Thus  and , therefore the solutions (6) and (10) can be written 

as follows, provided . 

 

and 

 

As an alternative the Equations (6) and (10) can be expressed in matrix notation as follows 

 

Thus 

 

Given the matrix , the matrix  is known as the inverse of  with 

the property that 

 

The solution to Equations (1) and (2) can therefore be expressed as follows. 

Given a pair of simultaneous equations 

 

form the matrix equation 

 

calculate the inverse matrix  

 

then express the solution  using 



 Copyright © 2011 Casa Software Ltd. www.casaxps.com 

3 
 

 

Equation (11) shows that the solution is obtained by matrix multiplication of the right-hand side of 

the Equations (1) and (2) by a matrix entirely created from the coefficients of the  and  terms in 

these equations. Geometrically speaking, the coefficients , ,  and  define a pair of straight lines 

in a 2D plane in terms of the slope for these lines. The right-hand side values for a given set of 

coefficients determine the intercept values for these lines and specifying the values for  and  

define two lines from the infinite set of parallel lines characterised by the coefficients , ,  and . 

Equation (11) states that it is sufficient to consider the directions for these lines in order to obtain a 

general method for determining the point at which specific lines intersect. 

For example, when given a pair of simultaneous equations 

 

the point of intersection for all equations of the form 

 

can be prepared by considering the matrix . 

If  then . The inverse matrix is therefore 
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With the exception of the last step, each step in the solution can be performed without reference to 

the values from the right-hand side . The solution is therefore obtained by considering the 

homogenous equations corresponding to a pair of lines passing through the origin. 

 

The method of solution fails whenever . Since  the failure occurs if 
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which geometrically means the two lines defined by the simultaneous equations (1) and (2) have the 

same slope and are therefore parallel. Parallel lines are either identical or the lines never intersect 

one another, therefore no single point can satisfy both equations. 

 

Linear Transformations defined by Matrices 

Rotation by  in an anticlockwise direction about the origin 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A matrix  such that  is 

said to be singular. 
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The shape with vertices  is transformed by the rotation matrix 

through matrix multiplication as follows. 

 

Reflection about a line making an angle of  in an anticlockwise direction 

with the x-axis 
Consider first the result of reflecting the unit vector in the direction of the x-axis. 

 

Next consider the result of reflecting the unit vector in the direction of the y-axis. 

 

 

 

 

 

 

 

 

 

Rotation about the origin by an angle of  is 

achieved by transforming a point  by matrix 

multiplication by 
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Reflection in a line through the origin making an angle  with the x-axis is therefore 

 

 

The shape with vertices  is transformed by the reflection matrix 

through matrix multiplication as follows. 

 

 

 

Reflection in a line making an angle of  with the x-

axis passing through the origin is achieved by 

transforming a point  by matrix multiplication 
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Examples of Matrix Transformations 

Reflection in the y-axis  

 

Rotation about the origin by  radians  

 

 



 Copyright © 2011 Casa Software Ltd. www.casaxps.com 

9 
 

Reflection in the y-axis followed by a rotation by  about the origin 

 

 

Rotation by  about the origin followed by a Reflection in the y-axis 
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Reflection in the line   

 

Rotation about the origin by  radians  
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Reflection in the  followed by a rotation by  about the origin 

 

 

Rotation by  about the origin followed by a reflection in the  
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Mapping Shapes of known Area 

Consider how a matrix  transforms an area of unit size to a new area. By considering a 

square defined by the unit vectors and therefore of unit area, the relationship between the initial 

area of a shape to the area of the transformed shape is shown to be dependent on the determinant 

of the matrix . A square is transformed by  to a parallelogram as follows. 

 

A matrix of the form  transforms the unit square to a parallelogram with area . 

The square defined by the unit vectors  and  after transformation by  become the vector 

 and . 

 

 

 

 

 

 

 

 

 



 Copyright © 2011 Casa Software Ltd. www.casaxps.com 

13 
 

 

Since the dot product between vectors gives 

 

 

Now,  and , therefore  

 ,  and  

 

 

 

 

An object with area of one unit is transformed by the matrix  to an object of area . 

Thus, a shape with area  is transformed by the matrix  to a shape with area  such that 

 

Example: 

The closed shape with vertices  is transformed by the enlargement 

matrix through matrix multiplication as follows. 

 

Since , the original area of the closed shape   is transformed to a shape 

with area    

 

  

 

 

 

The area of a parallelogram defined by and is 

given by 

If the base is taken to be the vector  the length of 

the base is , and the perpendicular height is 

, where  is the angle between  

and  
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Note: since a rotation about the origin in an anti-clockwise direction by the angle  is given by 

, the determinant of the rotation matrix  is  

therefore area is preserved by a rotation. Similarly, a reflection in a line passing through the origin is 

given by the matrix  has determinant . 

Again, areas do not change when a reflection transformation is performed. 
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Mechanics and Transformations 
Consider the motion of a ship travelling in a straight line relative to a buoy marking dangerous rocks 

beneath the water. From the location of the buoy, the path of the ship is specified by a velocity 

vector and a position vector relative to the buoy. 

 

The vector equation of the line representing the path of the ship is given by 

 

If the problem is to determine how close the ship gets to the rocks marked by the buoy, the solution 

is to determine the length of a line passing through the position of the buoy which is perpendicular 

to the velocity vectors and the point of intersection with the path of the ship. 

An alternative perspective is to consider the position of the buoy relative to an observer on the ship 

facing at right-angles to the direction of motion of the ship looking on the side where the buoy can 

be seen. A sequence of transformation to the vectors involved reduces the problem to calculating 

the coordinates for the buoy relative to the observer on the ship. The transforms are as follows: 

1. Translate the vectors to position the observer on the ship at the origin. 

 

2. Rotate the vectors about the origin so that the velocity vector is in the direction of the x-axis. 

 

 

Path of Ship 

Buoy 
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3. Reflect the vectors in the x-axis. 

 

The y-coordinate for the buoy is now the shortest distance at which the ship will pass the buoy. 

The translation transformation is achieved by subtracting the position vectors  from all vectors 

involved in the calculation. Note that a translation is different from a rotation or a reflection since a 

translation is not a linear transformation, while both a rotation and a reflection are linear 

transformations. 

To apply a rotation and a reflection to 2D vectors, two 2x2 matrices can be used to transform the 

vectors concerned. A rotation about the origin by  radians followed by a reflection in the x-axis 

are achieve by multiplying vectors by the rotation matrix 

 

Buoy 
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, then multiply the result of the rotation by the reflection matrix 

. 

Since the position of the buoy as originally described is at the origin , the position of the buoy 

relative to the observed on the ship is given by 

1. Translate by subtracting  from the original position vector for the buoy, therefore 

. 

2. Next, a rotation about the origin by  radians is achieve using matrix multiplication, 

. 

3. Finally a reflection about the x-axis  

The position of the buoy relative to an observer on the ship at time  is therefore . The 

equation of motion for the ship has been reduced to a 1D motion along the x-axis. The y-coordinate 

for the ship is therefore unaffected by the ship’s motion and only the x-coordinate changes with 

time. The shortest distance between the ship and the buoy is simply the component of position for 

the buoy perpendicular to the direction of motion of the ship and is therefore  units. 
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Basics of Vectors 
Vectors are a means of conveying size and direction. Graphically vectors are represented by lines 

with an arrow, where the length of the line indicates the size of the vector, and the orientation of 

the line and direction of the arrow indicate the direction for the vector. In two dimensions, vectors 

can be drawn as lines in the xy-plane.  

 

A table full of snooker balls could be defined in terms of a set of 2D vectors, where the position for 

each ball on the snooker table is defined relative to one chosen pocket by a set of lines with length 

equal to the distance of each ball from the pocket and the direction defined by the line connecting 

the ball to the specified pocket. 

 

It is usual to introduce vectors as entities belonging to a 2D world such as the surface of a snooker 

table, but it is worth observing how this 2D model relates to other dimensions. Even for the snooker 

table example, the 2D world over which the snooker balls move is a 2D plane parallel to the floor on 

which the snooker table stands, both planes represent slices within a 3D world. Similarly, a snooker 

ball moving in a straight line within the plane of the table surface is moving in 1D.  

Vectors are also closely linked to a mathematical understanding of dimension and the nature of the 

vector description changes with context. While a ball travels in a straight line a 1D model is sufficient 
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and such problems are solved without explicit reference to vectors. If the snooker ball strikes 

another ball and changes direction, a 2D model is required. If the snooker ball after the collision 

enters a pocket, the ball can move in a vertical direction perpendicular to the table surface and 

therefore a 3D model becomes essential. Vectors provide the means of moving in a systematic way 

between these scenarios. 

Geometric Perspective of Vectors 
Vectors have magnitude and direction. By implication, a set of 2D vectors must all be defined with 

respect to some underlying direction. For example the bottom edge of the snooker table offers a 

natural direction. Once the unit of size is stated and the agreed direction for a 2D problem is 

established all vector quantities can be defined. For a snooker table the unit for size is metres and 

the direction is chosen relative to an edge. The motion of balls on the table can then be analysed 

using vectors. 

 

The snooker ball example illustrates vector addition and multiplication of a vector by a scale factor 

or, in vector terminology, multiplication of a vector by a scalar. Adding  and  in a geometric sense 

results in a new vector . Scaling  by a factor of , then adding the new vector to  results in yet 

another vector . The lines representing  and  are literally obtained by the steps one would take 

when drawing the lines using a ruler, a protractor, a compass and a sheet of paper. First the line 

representing  would be drawn, the ruler would then be moved to the end of  pointed to by the 

arrow for the vector, then the ruler would be aligned in the direction of  before measuring using 

the ruler the magnitude or size of  as a distance from the end of . The beginning point for  (or 

the tail of the arrow) must be placed at the end of  (or the nose of the arrow). These drafting steps 

are the definition of how to add two 2D vectors. 

 

 

 

 

A snooker ball after being struck by the cue may be 

assigned a vector  representing the displacement from 

the reference table pocket and a second vector  

indicating both the direction of motion for the ball and 

the distance per second moved along the direction of . 

Assuming constant speed for the snooker ball, together 

these two vectors  and  provide a means of describing 

the position for the snooker ball one second after the 

ball is at the position defined by , namely, the vector 

. 

After two seconds, the snooker ball would move to 

. 

For 2D vectors, these vector statements can be 

represented using a pencil and paper to draw lines of 

length and direction corresponding to the vectors. 
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A geometric line drawn on a piece of paper defines an orientation. A line representing a vector is 

also specified using an arrow. The arrow however is vector notation for defining the positive 

direction for the line representing the vector. If a vector is multiplied by minus one, the arrow is 

reversed, meaning the positive direction has been switched. 

 

 

 

   

Adding  to   

 

 

 

 

 

 

Adding  to   
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Subtracting  from  as vectors is performed by adding  to . The vector –  is achieved 

graphically by reversing the arrow on the vector representing . The expression  is then 

constructed by first drawing the line representing , moving the ruler to the end of , before 

drawing the line in the direction of the vector – . 

 

When two or more vectors are added together, a diagram for the vector sum should show all the 

vectors aligned such that if a pencil were to trace from the beginning of the lines drawn to represent 

the vector sum, the pencil would always encounter the arrows all facing in the same direction. 

 

 

 

 
 

 

 

 

Subtracting  from   

  

 

Multiple  by  

Multiple  by  
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In 2D, constructing the triangle corresponding to the lengths and angles specified by the vectors  

and  will permit a graphical determination of the vectors such as  and . In mechanics, 

the ability to work with right-angle triangles and apply the cosine and sine rules when determining 

lengths and angles from general triangles is essential. 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

Start Here 
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The position vector  and  are two vectors which are parallel but of different magnitude. The 

only difference between these two vectors is the length of the lines which would be used to draw 

the vectors on a piece of paper. As a consequence, a scale factor can be applied to  to produce 

the same vector as . The question states the ratio of the line lengths   therefore  and 

 

 
 

 

 

 

 

Example: Express the position for the particle at location  in terms of the vectors  and , 

where  is located  of the length of  and  is the mid-point of the line . 

 

Two sides and the included angle, therefore apply the cosine rule: 

 where . Therefore  

 (to 3 sf). 

If the bearing for the ship were also calculated using the sine rule: 

Both the magnitude and direction for the ship as a bearing, namely, , 

are established using the geometry of a triangle congruent to the displacement vectors for the 

ship movements after leaving port. 

 

 

 

 

 

  

 
 

 

 

Example: Consider a ship sailing from port on a bearing of  for  before changing 

direction to a bearing of . What is the distance of the ship from port after the ship sails a 

further  following changing course? 

 

Direction: Bearings are measured 

clockwise from due north. 

Magnitude: distance travelled 

Vectors to geometry 
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 must be identical vectors or . The problem is therefore to express  in terms of  

and . 

 

The vector  and since  is the mid-point of the line , the vector 

. 

 

The vector . 

 

Since  is  of the length of , . 
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Moving Vectors from Geometry to Algebra 

 

The vectors  and , as drawn, provide the basis for constructing all vectors representing positions 

for balls on the snooker table. A key property for these two vectors  and  is the vectors are 

neither depicted as parallel nor anti-parallel. That is, the sine of the angle between the lines 

representing these vectors is non-zero. 

 

If we decided on two such vectors  and  for a given snooker table, the position of a snooker ball 

could be specified by stating the values for  and . The convention for working in 2D is to indeed 

define two vectors, denoted by  and  which are used in exactly the same context as the vectors  

and  to allow any point in a 2D plane to be specified by a pair of numbers equivalent to the scalar 

values  and  already discussed.  

The vectors  and  are chosen to be unit vectors, meaning vectors with magnitude equal to unity or 

in other words  unit in length. Further, these two vectors are defined to be perpendicular to each 

other such that if the vector  is rotated through  in an anti-clockwise direction, the resulting 

vector is the  unit vector. 

 

 

 

 

 

 

 

 

 

From the previous example, it is easy to see that any position 

on a line joining the initial position for the snooker ball and the 

pocket at which the ball is aimed can be defined using a scale 

factor for adjusting the length of . Further, sets of parallel 

lines of positions for balls can be described using  and . If  is 

scaled using a factor less than one, the position for the ball 

simply moves closer to the reference pocket. If the ball still 

moves from this new position in the direction of , a different 

line of positions on the table is defined. In fact, if both  and  

are scaled appropriately, any point on the snooker table can be 

defined. Assuming the two vectors  and  are not parallel in 

direction, any vector  representing the position of a ball on the 

snooker table can be written as the sum of these two vectors 

scaled by some pair of scale factors  and .  
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The meaning for these unit vectors depends on the context for the problem under analysis. Using 

the example of the snooker table, the unit vectors would be positioned parallel to the edges of the 

table. Alternatively, if a car were driving up a road and the motion of the car is modelled as a particle 

on an inclined plane, the  unit vector might be chosen to be parallel with the inclined plane forcing 

the  unit vector to be perpendicular to the direction of motion. 

 

Once defined, these unit vectors allow both magnitude and direction for other vector to be specified 

in the form 

 or as in column vector notation . 

Examples of vectors depicted geometrically are now represented using these unit vectors as follows. 

 

The vector  above scales the unit vectors by factor of  and  before summing the two 

resulting vectors. These scale factors used for each of these unit vectors are referred to as 

component values.  

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Or 
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Given a vector specified using the  and  unit vectors, the magnitude or length of the vector 

, is calculated using Pythagoras’ Theorem where the length of the vector is the 

hypotenuse of a right-angle triangle. The direction for a vector  is also calculated from 

the geometry of a right-angle triangle. 

 

 

While vectors in the form  can be manipulated in many ways, for the mechanics subjects 

treated in this text, only addition and scaling of vectors are important. The geometric interpretation 

of these two operations discussed above is embodied in the  and  description for vectors. 

Given two vectors  and  then   

The sum of two vectors is therefore performed by adding the components independently, a result 

entirely consistent with the geometry operations for summing two vectors. 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Magnitude or length of a vector 

Direction relative to the  unit vector is given 

by the angle  where 
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Multiplying a vector  by a scalar  is also achieved by component wise multiplication: 

 

This definition is again consistent with the geometric interpretation of adjusting the length of the 

line representing the vector. The magnitude of the vector after multiplication by a scalar  is 

 

These algebraic steps simply show that adjusting the length of a vector  by a scalar is the same as 

multiplying the components of the vector by the scalar and then calculating the length for the scaled 

vector from these new components. 

Two vectors  and  are equal if and only if the components are all equal, 

that is 

 if and only if  and  

As stated earlier, a unit vector is a vector with a length of unity or  unit in length. Since 

 is the length of the vector , provided the length is greater than zero a unit vector can 

be calculated for all such vectors, namely, . The importance of these unit vectors calculated 

from an arbitrary vector is that if the unit vector for any two or more vectors are equal, then the 

vectors are parallel and therefore represent the same direction. 

 

 

 

   

 

 

,  
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The initial statement regarding the nature of vectors was that a vector quantity has magnitude and 

direction. The  and  notation for describing vectors fits entirely with this statement. When a vector 

is expressed using the angle between the direction of the vector and the direction of  unit vector 

together with the magnitude of the vector : 

 

 

Examples of Vectors in Mechanics 
Example: Three forces acting on a particle are given by the vectors ,  and 

. Calculate the resultant force acting on the particle. 

Solution: 

Force has magnitude and direction, hence force is a vector quantity. The resultant force acting on a 

particle is the vector sum of all the forces in play.  

Resultant force  

 

Therefore  also known as the zero vector or the null vector. The vector sum for these 

forces shows the particle is in equilibrium. 

Example: A ball is thrown at an angle of  to the horizontal with a speed of . Express the 

velocity for the ball using unit vectors  and  where the  unit vector is parallel to the horizontal. 

Solution: 

Velocity is expressed in terms of a magnitude referred to a speed and a direction specified using the 

angle from the horizontal at which the ball is thrown. The velocity vector  is 

calculated from the right-angle triangle: 

 

 

 

 

1 

1 
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Example: A small bird feeder is held in equilibrium by the tension exerted by two light inextensible 

strings. The strings exert tension of  and  on the bird feeder. Given , 

calculate the magnitude for  and the angle the direction of  makes with the vertical. 

Solution: 

 

 

Smooth Hinge 

  

Light inextensible string 

Uniform rod  

 

Example: A uniform rod is hinged to a vertical 

wall and supported in a horizontal position by a 

light inextensible string. The magnitudes for 

two of the forces acting on the rod are 

,  while the reaction force 

at the hinge is  

Express all the forces acting on the rod as 

vectors using the unit vectors  and . Calculate 

the resultant force acting on the rod. 
 

 

 

 
 

 

 

 

 

The magnitude of is given by 

The angle between  and the direction of  is 

The tension  acts in a direction which makes the angle  to 

the horizontal, therefore the angle with the vertical is 

. 

 

 

 

 

 

 

 

 

 

 

Therefore, 
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Solution: 

The reaction force on the hinge is expressed in the required vector notation. The problem is to 

specify the weight as a vector  and the tension vector  acting on the rod by the string. The unit 

vectors  and  are specified by the diagram with the  unit vector parallel to the rod. 

Since the weight acts vertically downwards and is of magnitude , the weight vector is 

. 

The tension force is of magnitude  acting at an angle of  to the horizontal in the opposite 

direction to the  unit vector. 

 

The resultant force  acting on the rod is the vector sum of all the forces acting on the rod, namely, 

 

Writing these vectors as column vectors, 

 

 

Solution: 

The driving force  for the car has magnitude . The direction for the driving force is parallel 

to the road and since the unit vectors are chosen to be parallel and perpendicular to the road, the 

vector representing the driving force is 

 

 

 

 
 

 

 

Example: Express the forces 

acting on the car as vectors 

with respect to the indicated 

unit vectors. 
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Similarly, the resistance force  to the motion of the car has magnitude  acting parallel to 

the road but in the opposite direction to the motion of the car and also the  unit vector, therefore 

the vector representation for the resistance force is 

 

The normal reaction force of the road on the car  is in the direction of the  unit vector and has 

magnitude , therefore the normal reaction force is expressed as follows 

 

Since the weight of the car acts vertically downwards with magnitude , the weight vector 

 acts both perpendicular and parallel to the direction of the road. The components for the weight 

vector are calculated using right-angled triangles where the hypotenuse is of length equal to the 

magnitude of the weight and the angle is specified by the angle of the road. 

 

 

 

 

Example: A particle is projected from a point B with 

speed  in a direction  to the horizontal. The 

velocity of the particle after a time  seconds is given by 

a) Calculate the speed of the particle after  

seconds. 

b) Calculate the speed of the particle at the point 

when the velocity makes an angle of  to the 

horizontal. 
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Solution: 

Part a) The velocity vector for the particle is given as a function of time . To calculate the speed of 

the particle after  seconds, the magnitude for the velocity vector is calculated by substituting 

 into the equation: 

 

 

The speed of the particle is therefore  

Part b): The angle of the velocity vector to the horizontal is specified as . Given the angle 

between a vector and the positive direction of the  unit vector, a unit vector for the velocity vector 

can be written down: 

 

From the above equation for velocity in terms of time, the same unit vector is given by 

 

Taking the ratio of the components from the expressions (1) and (2), 

 

 

The velocity vector with direction  to the horizontal is therefore 

 

The speed of the particle at this point in the trajectory is  
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Application of Vectors to Surface Analysis 

 

 

 

 

 

 
 

 

One step in the simplex method involves 

calculating a position vector for a point in the 

opposite face to the vertex with greatest 

function value. The opposite face in the 3D 

case is a triangle. 

Vector equation of plane containing position 

vectors ,  and  is: 

therefore  lies in the plane too. 

  

Simplex Optimisation 

 

A peak defined in terms of peak-maximum position , the full width at half maximum   

and peak height  using an approximation of the form is fitted to a 

set of experimental intensities by adjusting the three parameters ,  and  to minimise a 

function of these three variables of the form 

For non-linear optimisation using the simplex algorithm, these three parameters ,  and  

are considered as coordinate values in a 3D vector space. A series of tests for a minimum 

are performed as part of the simplex algorithm via transforming a set of initial coordinates 

defining the vertices of a tetrahedron (the 3D case for a simplex) to new sets of coordinates 

with similar tetrahedral geometry. 
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Calculated from  

Optimisation by the simplex method 

involves transforming a simplex to a new 

simplex by moving the coordinates for 

the vertex with greatest function value 

(position vector ) to a point along the 

line passing through the opposite face of 

the simplex (position vector ) and the 

vertex with greatest function value. The 

new vertex is calculated from the vector 

equation of a line defined by  and  

The vector equation of a line passing through the position vector  and in the direction of 

the vector  is given in terms of the scalar  by   .The units of  are 

determined by the magnitude of . 


