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Centre of Mass 
A central theme in mathematical modelling is that of reducing complex problems to simpler, and 

hopefully, equivalent problems for which mathematical analysis is possible. The concept of centre-

of-mass is one such mathematical device for reducing the complexity of a problem to a more 

tractable system for which an understanding can be attempted in terms of mathematics.  

The question of why loading a set of shelves from the top is more likely to induce an accident than if 

loaded first from the bottom is one such problem addressed by reducing the shelves and boxes to a 

single mass at a location through which the stability of the shelves can be understood. 

 

The centre-of-mass for a rigid body is central to almost all the solutions so far seen in this text. Each 

time a ladder is represented by a uniform rod, or a cricket ball is modelled as a particle, the essential 

idea behind centre-of-mass is deployed, namely, there exists a point in space through which the 

weight of these bodies acts. The physical dimensions are then only important in terms of the turning 

effect resulting from the rigid nature of the bodies. 

While the centre of mass can be determined for 3D objects, the subject will be developed only for 

1D and 2D rigid bodies. A 2D rigid body is referred to in mechanics as a lamina, which is 

characterised by a body with some mass and having an appreciable plane area, but negligible 

thickness. Discussions will be further limited to uniform lamina and networks of uniform rods.  

The significance of the term uniform is the centre of mass for a uniform rigid body can be 

determined based on the geometric lines of symmetry. Since the centre of mass for a uniform 

lamina must lie on a line of geometric symmetry, two or more geometric lines of symmetry cross at 

the position for the centre of mass. Thus, a uniform lamina with the geometry of a circle will have 

the centre of mass coinciding with the geometric centre for the circular shape.  

Provided a complex lamina can be broken down into a set of shapes for which the centre of mass is 

known, the centre of mass for complex shaped lamina can be determined from the techniques 

described below. 
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Calculating the centre of mass is performed by replacing the uniform lamina by a light lamina for 

which a single particle of mass equal to the mass of the uniform lamina is attached to the light 

lamina such that the turning effect under the influence of gravity for the two laminas about any line 

within the plane of these laminas is the same. 

For a square uniform lamina lying in the horizontal plane, the turning effect of the lamina would be 

the same as that of a particle positioned at the point where two axes of symmetry cross, with the 

same mass as the uniform lamina.  

 

When discussing turning effects in 2D, the significant statement is the turning effect is now about a 

line rather than a point. For 1D problems, where an object is modelled using a rigid rod, the turning 

effect was considered to be about a point. Another way of thinking about the 1D concept of rotation 

about a point is that the point is the cross-section of a line perpendicular to the rod and the plane of 

the paper on which the rod is drawn. In this sense moments, even for 1D problems, were always 

about a line, not a point. 

For more complicated shaped laminas, the problem of determining the centre of mass is that of 

reducing the lamina to shapes for which centre of masses are known, and then determining the 

centre of mass for a set of particles with masses and positions determined by these simpler shapes. 

For example, a square lamina with a quadrant missing could be broken down into a rectangle and a 

square. The centre of mass for the rectangle and square are determined by geometric symmetry, 

and these component lamina replaced by particles of equivalent masses. 

 

The centre of mass for the original shape is then determined from the centre of mass for a set of 

particles of different masses attached to a light lamina.  

 

 

2M 
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3M 

 

 

 

 

Uniform lamina mass M Light lamina with particle mass M at centre-of-

mass for the uniform lamina 
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The light lamina to which these particles are attached is only conceptual and can be viewed as any 

shape we wish, which is important for situations where the centre of mass lies outside the boundary 

of the original lamina. The centre of mass for a hollow object, such as a washer, is not within the 

material part of the washer. 

 

If a mechanical system can be reduced to a set of particles of known mass and spatial separation, 

then the centre of mass for the original rigid body can be calculated by summing the moments for 

each particle about any line we choose, and then calculating the distance from the line for a particle 

equal in mass to the total mass such that the moment of the particle of total mass is the same as the 

sum of the moments for all the particles. The sum of moments must account for a specified 

rotational sense with respect to the chosen line. 

 

 

 

 

 

 

Moments about the x-axis for component particles:  

Must be equivalent to the moment for the total mass 

particle  

where  is the distance of the centre of mass from the x-

axis. 

Therefore,  

 
 

  

 

 

 

  

 

 

 

For the component particles, moments about the y-axis:  

Must be equivalent to the moment for the total mass particle:  

where  is the distance of the centre of mass from the y-axis. 

Therefore,  
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In general, provided a lamina can be reduced to a set of particles of known mass 

 and positions , applying the same 

logic for 2D shapes based on moments about the coordinate axes chosen for the shape, the centre 

of mass can be determined as a weighted average of position: 

 

If the total mass , 

 

Similarly, 

 

Note, depending on where the coordinate axes are chosen for a particular shape, the particle 

coordinates may be positive or negative. These positive and negative coordinate values correspond 

to the convention used for the rotational sense of the moments underlying these formulae. 
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The lamina is constructed from three components: the rectangle , a semi-circle and a triangle 

connected to the rectangle at  and . The first step is to calculate the centre of mass for a semi-

circle using calculus. The triangle also needs further analysis, but the centre of mass for the rectangle 

is determined from geometric symmetry. 

Centre of Mass for a Semi-circle 

 

By geometric symmetry, the centre of mass must lie on the x-axis for a semi-circle radius  obeying 

the functional form  for .  

 

 

 

 

 

 

Equation of a circle  

 

Mass of strip with area density  is 

 

  
  

 

  

Example 

A uniform plane lamina constructed from a rectangle connected to a semi-circular section and 

an isosceles triangle  with dimensions , ,  

and . 

Show that the centre of mass for the lamina is  below the line . 
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Calculating distance for the centre of mass from the y-axis for a semi-circle of uniform density per 

unit area  is performed using the concepts of summing moments in exactly the same way moments 

are calculated for sets of particles. The semi-circle is approximated by a set of rectangular regions of 

width  and height . 

 

By symmetry, the centre of mass for these rectangles lies on the x-axis and the mass for each 

rectangle positioned  from the y-axis is 

 

Where . 

The total mass for the semi-circle is known exactly, and is  acting through the centre of 

mass for the semi-circle at the, yet to be determined, position  from the y-axis. 

If the centre of mass for the semi-circle is  from the y-axis, then an approximation to the centre of 

mass will be 

 

 

In the digital age, such an expression would be sufficient to obtain an answer within the precision 

achieved by a calculator or a computer, however, calculus can be used to derive an exact expression 

for the centre of mass. 

If the number of rectangles used in this approximation is allowed to increase, the width  for each 

rectangle decreases, thus as rectangles are added to the approximation, the area and therefore the 

mass for each rectangle gets smaller. By increasing the number of rectangles, the number of small 

masses becomes ever larger, and understanding the consequences of adding more and more of ever 
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smaller items is precisely the stuff of calculus. Mechanics, differentiation and integration are 

strongly linked. 

To obtain the centre of mass for the semi-circle, as  the summation tends to the integral (the 

sum involved in  must go to zero as ) 

 

Using the substitution , with limits from  to . 

 

 

This result is a standard result from a host of other standard centres of mass for uniform laminas, all 

of which will be provided under examination conditions, but nevertheless, illustrates where a desire 

to understand a physical object leads to the concepts of calculus and therefore should be seen as the 

motivation for studying techniques of integration in other mathematics courses. 

Centre of Mass for an Isosceles Triangle 

 

By symmetry, the centre of mass for an isosceles triangle lies on the x-axis and the mass for each 

rectangle positioned  from the y-axis is 

 

Where . 

The total mass for the isosceles triangle is  acting through the centre of mass for 

the triangle at the position  from the y-axis. 

 

 

 

 

 

 

 

 

 

Equation of a line 

 

Mass of strip with area density  is 
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If the centre of mass for the triangle is  from the y-axis, then an approximation to the centre of 

mass will be 

 

 

Again moving to the limit as  

 

 

The centre of mass for the complex shape can now be reduced to a set of three particles located at 

the centres of mass for each of the component parts. 

 

To calculate the distance of the centre of mass for the entire lamina from the line , the moment 

of the weights for these three particles about  must be the same as the moment about  of a 

single particle of total mass . Thus, 
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Since the centre of mass for the particle corresponding to the rectangle is on the opposite side of the 

line  to the two particles corresponding to the triangle and the semi-circle, the moment for the 

rectangle is negative relative to the two particles above the line . 

 

The value for  is negative, therefore the centre of mass is below the line . 

 

The problem differs slightly from the previous example by virtue of a missing square of metal rather 

than shapes being added to a square. The problem could be approached by dividing the metal 

bracket into many smaller rectangles from which the centre of mass for the bracket could be 

calculated. However, by applying mathematical reasoning, the problem can be solved by considering 

three masses corresponding to: 

1. The mass of a square bracket without the removal of the smaller square. 

2. The mass of the square corresponding to the missing smaller square. 

3. The mass of the bracket with the smaller square removed. 

The reasoning is as follows. The bracket before the smaller square is punched out consists of the 

union of the bracket after the smaller square is removed and the small square itself. If the metal 

plate from which the bracket is made is considered to be constructed from the bracket plus the 

smaller square, the centre of mass for the square metal plate can be expressed in terms of the two 

component parts. The only difference is the unknown is now one of the component parts. 

 

 

 

 

 

 

 

  

 Example 

A metal bracket is designed as a 

square ABCD of size 12 cm with a 

square of size 4 cm removed from one 

quadrant as shown in the diagram. 

a) Find the distance of the centre 

of mass for the bracket from 

the side BC. 

The bracket is suspended from A and 

hangs at rest. 

b) Find the size of the angle 

between AB and the vertical. 
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Since the centre of mass for the larger square is known and the centre of mass for the smaller 

square is also known, both obtained using the lines of symmetry for a square, the unknown centre of 

mass for the bracket can be determined. 

a) Find the distance of the centre of mass for the bracket from the side BC. 

Assuming the metal bracket can be modelled as a uniform lamina of density per unit area , the 

masses for a square of size  by , the smaller square of size  by  and the 

bracket are calculated as follows. 

 

 

The same logic therefore applies as before, namely, the moments about the x-axis for the full square 

must be the same as the moments about the x-axis for the two component parts. 

 

 

 

By symmetry, . 

 

 

 

 

 

 

 

 

   

  



 Copyright © 2011 Casa Software Ltd. www.casaxps.com 

11 
 

b) Find the size of the angle between AB and the vertical. 

The lamina is suspended from the corner  and is assumed to be at rest. The practical method for 

determining the centre of mass for a metal bracket is to suspend the bracket from two different 

corners and each time mark the line on the bracket through the corner from which the bracket is 

suspended and a plumb line hanging vertically downwards. Two such lines marked on the metal 

bracket would intersect at the centre of mass. 

If the bracket is suspended at rest from the corner , then the mathematical solution is therefore 

obtained by drawing a line through  which passes through the centre of mass previously calculated. 

 

 

 

 

 

  

 Vertical line 
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Solution 

a) Given that the centre of mass for these three particles in the absence of the uniform lamina 

has x-coordinate equal to , calculate the value of . 

By taking moments about the y-axis, the particle of mass  will be eliminated from the calculation 

while the particle specified as  will be part of the equation. Thus, taking moments about the y-

axis for the three particles in the absence of the lamina, 

 

 

 

b) If the mass of the uniform lamina is , find the coordinates for the centre of mass of the 

combined system of lamina and three masses. 

Since the first part of the question gave the x-coordinate for the centre of mass for the three 

particles attached to a light lamina, calculating the corresponding y-coordinate for the centre of 

mass offers a means of reducing the problem from a four mass to a two mass problem. The three 

masses attached to the lamina will be reduced to a single particle of mass  

positioned at the calculated centre of mass for these three individual masses. 

The y-coordinate for the three particles of mass ,  and  is obtained by taking moments 

about the x-axis. 

  

 

 

 

 

 

 
Example 

Three particles are attached to a uniform rectangular 

lamina. The coordinates for the particles are , 

 and  corresponding to masses ,  and 

, respectively. 

a) Given that the centre of mass for these three 

particles in the absence of the uniform lamina 

has x-coordinate equal to , calculate the 

value of . 

b) If the mass of the uniform lamina is , find 

the coordinates for the centre of mass of the 

combined system, namely,  lamina and three 

attached masses. 

c) If the combined system is freely suspended 

from the corner  , calculate the angle between 

AB and the horizontal. 
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The centre of mass for the three particles is therefore . A particle of mass 16m 

positioned at  has the same moment as the three separate particles. 

The centre of mass for the combined system of uniform lamina mass  and the three particles is 

obtained by finding the centre of mass for the two particle of mass  positioned at  and 

 positioned at . 

 

c) If the combined system is freely suspended from the corner  , calculate the angle between 

AB and the horizontal. 

 

Toppling Points for a Lamina 
If the reaction force to a lamina placed on a plane is modelled as a force acting perpendicular to the 

plane through the point vertically below the centre of mass for the lamina, the problem of stability 

Horizontal line 

 

 

 

 

  

 

  

 

Suspending the combined system from  

means the centre of mass will be vertically 

below , therefore the angle between  and 

the horizontal is the angle  marked on the 

diagram. 

  

 

 

 

 

Taking moments about the y-axis: 

 

 

Taking moments about the x-axis: 
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with respect to toppling can be understood in terms of turning effects about the point vertically 

below the centre of mass.  

 

Placing a lamina on an inclined plane causes the position for the reaction force to change. For a 

rough surface a friction force must also act through the point vertically below the centre of mass. If 

all the forces acting on a body act through the same point, since the distance from that point to the 

line of action for all the forces is zero, the moment about that point is zero. For a lamina in contact 

with a plane, the reaction and friction forces can only act through a point of the lamina in contact 

with the plane, thus provided the centre of mass is vertically above any point in contact with the 

plane, the sum of the moments for all the forces must be zero and therefore the body modelled by 

the lamina will be stable with respect to toppling. 

 

Tipping point: the centre of mass is 

vertically above the corner for the 

edge in contact with the plane. 

Stable: The centre of mass 

is vertically above a point 

within the base. 

Tipping occurs: It is not 

possible for all forces 

to act through a single 

point. 
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The solution for part a) is required in the solution of part b). The angle at which the lamina is at the 

point of tipping occurs when the centre of mass is vertically above the point on the base of the 

lamina in contact with the plane about which the lamina will rotate when toppling. 

a) Determine the distance of the centre of mass from the common edge between the triangle 

and the rectangle. 

Let the distance of the centre of mass for the lamina from the line joining the triangle to the 

rectangle be . Since the lamina has a line of symmetry passing through the mid-point of the triangle 

base and the mid-point of the rectangle edge parallel to the triangle base, the centre of mass for a 

uniform lamina must lie on this line of symmetry. The coordinate axes can be positioned with 

respect to the lamina as follows. 

 

 

 

 

 

 

 

Example 

A uniform lamina is constructed from an isosceles triangle with base  and height  

connected to a rectangle of size  by  as shown in the diagram. 

a) Determine the distance of the centre of mass from the common edge between the 

triangle and the rectangle. 

The lamina is placed on an inclined plane which makes an angle  to the horizontal. 

b) Determine the largest angle  for an inclined plane such that the lamina does not 

topple. 
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The y coordinate of centre-of-mass for the triangle, the rectangle and the combined lamina all have 

the same value, namely, .  

The distance  is then calculated to be the same as the x coordinate for the centre of mass for the 

lamina. 

 

The centre of mass for the lamina is calculated using prior knowledge about the centre of mass of a 

triangular uniform lamina and the centre of mass for a rectangular uniform lamina. If the mass per 

unit area is , then the information used in calculating the centre of mass for the combined lamina is 

as follows. 

 

The centre of mass for any triangle, not just an isosceles triangle, lies on the median line passing 

through a vertex and the mid-point of the opposite side to the triangle. It can be shown that the 

distance from the mid-point of a side to the centre of mass is a third the length of the median line 

passing through the opposite vertex. The distance from the y-axis for the triangular lamina of height 

6 cm is therefore  to the left of the y-axis so the x-coordinate for the centre of mass is . 
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Taking moments about the y-axis, 

 

 

b) Determine the largest angle  for an inclined plane such that the lamina does not topple. 

The tipping point for the lamina placed on an inclined plane is determined by assuming the centre of 

mass is vertically above the corner about which rotation can occur. 

 

 
  

   

 

 

 

 

 

 

 
 

Median lines drawn from the 

mid-point of a side to the 

opposite vertex intersect at the 

centre of mass for a scalene 

triangle. 
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The angle for the inclined plane is therefore given by 

 

 

  

 
 

 

Vertical Line 
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Solving Statics Problems 
The types of problem associated with statics include mechanical systems which do not move. For 

example a ladder placed against a wall, where it is important for anyone climbing the ladder that it 

does not move. These problems are analysed in terms of forces, friction and moments of forces. 

Techniques used to analyse a statics problem in terms of forces are also used as part of dynamics 

when determining the resultant force acting on a particle in motion. Statics at the level discussed in 

this text is concerned with rigid bodies, not just particles, and as such requires the consideration of 

turning effects of forces acting on rigid bodies. Turning effects of forces on rigid bodies are dealt 

with using moments of forces which include an understanding of where the centre of mass for a 

rigid body is located, which in turn is determined using moments of forces. The problems included in 

this section therefore are not only the traditional statics problems, but will be supplemented by 

elementary determination for the centre of mass for a mechanical system. 

 

The problem as stated models the ladder as a rigid uniform rod of mass  and the painter as a 

particle of mass  located at . The concept of a particle allows a complex shape like that of a 

painter to be reduced to a point mass equivalent to the mass of the painter. Clearly a painter is not 

rigid, thus replacing the painter by a point is a relatively crude form of mathematical modelling. The 

rigid uniform rod similarly allows the weight of the ladder to act through the geometric centre of the 

rod, which is, by virtue of the uniform rod assumption, the centre of mass for the rod. A ladder 

replaced by a rod is a reasonably good mathematical model, and one that is more realistic than a 

painter approximated by a particle. 

The term geometric centre is used to describe a point at which all lines of symmetry meet. 

When solving problems involving ladders, the first step is to annotate a diagram with the forces 

acting on the mechanical system consisting of the ladder, the painter, the floor and the wall. Since 

the ladder is modelled as a uniform rod of length , the centre of mass for the ladder is 

 

 

  

Example 

A painter places a ladder  of length  and mass 

 against a smooth vertical wall and on a rough 

horizontal floor, such that the ladder is in a vertical 

perpendicular plane with respect to the wall. The painter 

of mass  stands at point  on the ladder such that 

. The coefficient of friction between the 

ground and the ladder is . If the ladder is on the point of 

slipping, by modelling the ladder as a uniform rod and the 

painter as a particle, 

a) Show that the magnitude of the frictional force of 

the ground on the ladder is . 

b) Determine the angle  made by the ladder with 

the horizontal floor. 
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 from . The particle is located  from , therefore is  from . The weight of the ladder 

is  and the weight of the particle is . In addition to these weights, since the ladder 

stands on a rough floor, the diagram must include a normal reaction force  and a friction force . 

The direction for the friction force should be to oppose any potential movement the ladder would 

make should the ladder begin to slip. The wall is smooth and therefore the contact point of the 

ladder with the wall has no friction force parallel to the wall surface, but must include a normal 

reaction force . 

 

If the ladder and the painter are at rest, then the resultant force in any direction must be zero and 

the sum of the moments about any point must be zero too. 

a) Find the magnitude of the frictional force of the ground on the ladder. 

The question states the ladder and painter are at the point where the ladder is about to slip, which 

in mechanics terms means the friction force is at the maximum possible value. Since friction is a 

passive force, the size of the friction force depends on the forces attempting to move the ladder, so 

in general, if  is the coefficient of friction and  is the magnitude of the normal reaction force, then 

the friction force obeys the relationship 

 

And only attains the maximum value when in limiting equilibrium, that is, at the point just before the 

ladder slips. The maximum friction force is obtained using . Since the coefficient of friction 

between the ladder and the floor is given, namely, , the solution for the magnitude of the 

friction force requires the determination of the normal reaction force at . 

For a body at rest, the resultant force in any direction must be zero, and in particular, since the 

normal reaction force at A acts vertically, resolving the forces vertically yields 
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Thus, the magnitude of the friction force  is given by 

 

b) Determine the angle  made by the ladder with the horizontal floor. 

The angle  is obtained by generating equations involving lengths and forces. For a rigid body to be 

in equilibrium, the moments of the forces taken about any point must sum to zero. Since the 

condition for equilibrium must be satisfied for any point, the best point to choose is a point on the 

ladder which simplifies the resulting equations. Taking moments about  eliminates the normal 

reaction force and the friction force from the equations. 

The moment of a force about a point is the product of the magnitude of the force and the 

perpendicular distance from the point to the line of action of the force. 

 

For the ladder, the distance from the point  to the line of action of the various forces will introduce 

the angle . Further, since the line of action for both the friction and the normal reaction force at  

both pass through , the distance between  and these two forces is zero, hence the earlier 

statement asserting the friction and normal reaction forces at  are eliminated by choosing  as the 

point about which moments are taken. 

Moments about , taking clockwise direction as positive: 

 

F 
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Therefore, summing the moments about  yields: 

 

This equation involves two unknowns, therefore another equation is required involving . 

Resolving the forces in the horizontal direction . 

 

 

 

 

 

 

 

 

Moment about  for Weight of Ladder 

 

  

 

 

 

 

 

 

Moment about  for Weight of particle at  

 

 

 
 

 

 

 

 

 

Moment about  for Normal Reaction Force at Wall 
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The ladder and loads, in this example, are designed to illustrate how more involved problems can be 

solved by reducing the system of masses to an effective mass acting through the centre of mass for 

the ladder together with the particles attached to the ladder. 

While the ladder and masses are ultimately placed against a wall at an angle, the underlying 

collection of masses can be reduced to a single mass acting through the centre of mass. This 

principle is already applied to the concept of a uniform rod, where the mass representing the ladder 

acts through the geometric centre for the rod. We now wish to find the position on the ladder where 

a single mass attached to a light rod would produce the same result as analysing the masses and 

ladder as separate entities. 

To calculate the centre of mass, the idea is to determine the turning effect about some point of the 

heavy rod (uniform rod-with-mass) and the three masses and determine the moment for a particle 

with mass equal to the total mass (the ladder plus the three masses) attached to a light rod, such 

that the moments for these two systems of masses and rods are exactly the same. 

 

 

 

 

 

 

 

Example 

A ladder  of mass  and length  is placed against a 

smooth vertical wall and on a rough horizontal floor, such 

that the ladder is in a vertical perpendicular plane with 

respect to the wall. A particle of mass  is placed at point 

 on the ladder such that . Two further masses 

 and  are attached to the ladder at  and , 

respectively. The coefficient of friction between the 

ground and the ladder is  and the ladder makes an angle 

 with the horizontal floor such that . Given 

that these loads and the ladder are in equilibrium, find 

the possible range for the values of . 
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The ladder and masses can be placed on the horizontal ground for the convenience of the 

calculation. A similar more involved calculation could be performed with the ladder against the wall, 

but the outcome for the centre of mass must be the same, which will be shown by solving the 

problem as stated by reducing the system of masses to a single effective mass and by direct solution 

treating each mass individually. 

Placing the ladder and masses on the horizontal floor, the moment of a force is the magnitude of the 

force times the perpendicular distance to the line of action of the force. All weights act vertically, 

hence the desire to lay the ladder flat. Taking moments about the point A for each of these two 

equivalent mechanical systems yields: 

For the heavy rod and masses: 

 

For the light rod and single mass: 

 

If these two systems are equivalent the moments about A must be equal. Thus, 

 

 

 

Those studying statistics will recognise the quotient as a weighted mean where the mass is 

equivalent to the frequency. 

 

 
   

 

    

 

Ladder of length  of Mass  



 Copyright © 2011 Casa Software Ltd. www.casaxps.com 

25 
 

 

The original problem is then reduced to a light rod and a single particle: 

 

The solution to the original problem then proceeds by listing the equations generated by resolving 

the forces vertically and horizontally as indicated on the diagram, the relationship between friction 

force and the normal reaction force of the ladder on the floor and taking moments about A. 

Resolving vertically: 

 

Resolving horizontally: 

 

Finally taking moments about A: 

 

Coefficient of friction: 

 

Equation (1) yields , therefore 

 

Equation (2) shows that  and substituting for  and  Equation (3) gives  
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Since , 

 

Substituting  into Equation (5) provides the inequality 

 

 

 

For equilibrium, the ladder must have a mass placed at A where, . 

The alternative to reducing the ladder and masses to a single mass is the direct approach where all 

the forces for each explicit particle and the ladder are detailed on the diagram. The solution 

proceeds with exactly the same steps, the difference being the complexity of the equations 

generated from resolving vertically and taking moments about the point . Taking a complex system 

and reducing the system to an equivalent simpler system is a common theme in higher mathematics, 

and thinking in terms of the centre of mass is a good example illustrating this approach. It also 

explains why calculating the centre of mass for complex rigid bodies features in most mechanics 

courses. 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

Resolving vertically: 

Moments about A: 

These equations should be compared to Equations 

(1) and (3) above. The result obtained from these 

equations is the same as when the ladder and 

particles are reduced to a single mass acting at the 

centre of mass for the system. 
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The essential difference between a problem involving a ladder leaning against a wall and a rod 

supported by a peg is at the contact point for the rod. If the peg and the wall are smooth, that is the 

contact point between the rod and either the wall or the peg has no friction force therefore only 

involves a normal reaction force, the difference between these two problems is the direction for the 

reaction force. The normal reaction force of the ladder in contact with a vertical wall is horizontal, 

while for the smooth peg, the direction for the normal reaction force depends on the angle between 

the rod and the floor. 

 

If a ladder were placed on top of a smooth wall, the problem reduces to that of a smooth peg. 

 

 

 

 

Normal 

reaction force 

for a ladder 

against a 

smooth wall 
Normal reaction force for a rod supported by 

a smooth peg 

 

 
 

 

 

 

Example 

A uniform rod of length  and mass  rests in equilibrium with one end in contact with a 

rough horizontal surface at , and is supported by a smooth peg at position  where 

. When in limiting equilibrium, the rod makes an angle  with the horizontal surface. Show 

that  

a) The normal reaction force at  is . 

b) The coefficient of friction  can be expressed in terms of the angle by 
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Solution 

The most important part of the solution for the uniform rod supported by a smooth peg is to draw a 

diagram annotated with all the force vectors. 

 

a) The normal reaction force at  is . 

The first part to the question is intended to guide the solution in a direction leading to the answer 

for part b). 

The pattern common to solving statics problems involves resolving the forces in two perpendicular 

directions and taking moments about an appropriate point to obtain equations relating the key 

information desired. Since the normal reaction force at  is the information requested first, 

resolving the force vectors in the vertical direction and, for equilibrium, equating to zero would be a 

good first step in the solution. 

 

 

 

 

 

 

 

 

 

 

 

Ladder placed 

on top of a 

smooth wall 
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The expression for the normal reaction force at  is therefore obtained by substituting Equation (3) 

into Equation (1) 

 

 

And since  

 

 

 

 

 

 

 

 

 

 

 

 

 

Since  act through  taking 

moments about : 

 

 

 

 

 

 
 

 

Resolving the forces Horizontally: 

 

 

 

 

 

 

 

Resolving the forces vertically: 
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b) The coefficient of friction  can be expressed in terms of the angle . 

For limiting equilibrium 

 

Substituting Equation (2) into Equation (5) 

 

Substituting from Equation (3),  and from Equation (4)  

 

 

And since , 
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The force acting at  is not specified by a magnitude or direction. Since so little is known about the 

force at  the solution is likely to involve taking moments about , as in so doing the resulting 

equation for equilibrium of the rod will not require any knowledge about the force at . Further, 

since the coefficient of friction is given, the friction force is known in terms of the normal reaction at 

, so taking moments about  and substituting  into the resulting equation allows the 

normal reaction to be determined. 

 

Since , and ,  

 

 
 

  

 

 

 

 

 

For equilibrium Moments about    

 

 

 

 

 
 

 

Example 

A uniform rod  of length  and mass  rests with one end  on a rough horizontal 

plane. A force is applied to the rod at a point  which is  from  such that the rod is held in 

limiting equilibrium at an angle  to the horizontal, where . The line of action of the 

force at  is in the same vertical plane as the rod. Given that the coefficient of friction between 

the rod and the horizontal plane is , find the magnitude of the normal reaction force of the 

ground on the rod at . 
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The problem as stated is aimed at maintaining the uniform rod  in equilibrium in a horizontal 

position. To achieve this aim, all the forces acting on the rod  must be introduced into a diagram 

for the rod . 

The active force on the rod  is the weight of the rod 20g acting through the centre of mass for the 

uniform rod. Since the rod is uniform, the centre of mass acts through the geometric centre of the 

rod and is therefore  from . 

Two passive forces, one at the smooth hinge at  and the second the thrust of the rod  at , must 

also be included as external forces acting on the rod . These passive forces act in response to the 

rod’s weight, and are only present because of active forces such as the weight of the rod . If the 

rod were light, no force would exist at the hinge and no thrust would act in the rod . 

A smooth hinge exerts a force on the rod  from the wall with magnitude and direction as yet to 

be determined. To accommodate the reaction force at , two perpendicular forces are introduced 

which represent the components of the reaction force  at , or in vector notation, , 

where  and  are unit vectors in the horizontal and vertical directions. 

Thrust exerted by the rod is a passive force acting against the force attempting to compress the rod. 

The thrust  acts in a direction parallel to the rod CD and through the point C on the rod AB. 

 

 
 

 

 
 

 

Example 

A uniform rod  of length  and mass 

 is smoothly hinged to a vertical wall at 

. A light rod of length  is freely jointed to 

the rod  at  and fixed to the wall vertically 

below  at . The rod  is positioned with 

 so that the rod  is held 

horizontally in equilibrium. 

a) Determine the thrust in the rod . 

b) The magnitude of the force exerted by 

the wall on the rod at . 
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Solution 

a) Determine the thrust in the rod . 

Since the reaction force in the hinge acts through , taking moments about  and, for equilibrium, 

equating to zero provides an equation involving the weight of the rod  and the thrust only. 

The perpendicular distance between the line of action of the weight and the point  is . The 

perpendicular distance  between the line of action for the thrust and  must be calculated from 

the geometry of the rods and vertical wall. 

 

Moments about A: 

 

 

 

b) The magnitude of the force exerted by the wall on the rod at . 

The reaction force at the smooth hinge is defined in terms of two perpendicular components  and 

, therefore the magnitude of the reaction force , is . These component 

forces are obtained by resolving the forces on the rod  in the horizontal and vertical directions. 
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The negative sign for the components to the reaction force of the hinge indicates the forces as 

marked on the diagram are actually in the opposite direction. 

The magnitude for the reaction force of the hinge at  is therefore, 

 

 

 

The active forces are due to particles located at  and  on the light rod. When in equilibrium, these 

active forces must be balanced by passive forces in the two light inextensible strings. The strings are 

fixed at  and attached at each end of the rod, therefore each string will cause a force to act on the 

rod due to the strings resistance to being stretched. A force resisting elongation in a string is 

referred to as tension and is illustrated using an arrow pointing into the string. 

The solution to the problem of hanging a rod using two strings, as usual, involves drawing a diagram 

to illustrate the forces acting on the rod and particles, however, the importance of an accurate well 

 

 

 

 

 

 

 

 

 

 

Example 

A particle of weight  is attached to the end  of 

a light rod  of length . A second particle of 

weight  is attached to the opposite end of the 

rod. Two light inextensible strings each of length  

are attached to the ends of the rod before being 

fixed to a point C, from which the rod is hung. Show 

that if the rod is in equilibrium, the angle between 

the rod and the horizontal is  where 

 

 

 

 

Resolving vertically, 

Resolving horizontally, 
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drawn diagram is clearly shown by this example. Without a clear geometric understanding for the 

system of strings, particles and rod, the solution is more difficult to see. The problem is posed to 

extract a higher than usual mathematical content for mechanics questions, but would certainly 

require an even higher mathematical intuition without a pictorial understanding of the components 

involved. 

 

The solution involves observing the structure within the mechanical system; specifically the four 

forces are divided between two points of action, therefore taking moments about each of the two 

points  and  yields two equations for the tensions  and  in terms of the angle . The angle  is 

clearly determined by the isosceles triangle, as follows. 

 

Using the geometry for the isosceles triangle: ,  and . 

  

 

   
 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

Geometric points: 

1. The triangle  is isosceles, 

with two side of equal length 

and therefore the angles  

and  are equal angles , 

say. 

2. The angle between  and the 

horizontal . 

3. The angle between  and the 

horizontal . 
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These two equations involve three unknowns, ,  and , therefore a third equation relating these 

values is required.  

Resolving horizontally and, again, using the condition for equilibrium that the resultant force in any 

direction must be zero, 

 

Since  and , 

 

Using the trigonometric identities  

 

And  

 

 

Equations (1) and (2) yield 

 

 

 

Substituting for  into Equation (3), 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

Taking moments about  and, for 

equilibrium, equating to zero: 

Similarly, taking moments about  

and, for equilibrium, equating to zero: 
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Since,  

 

 

 


