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Uncertainty Estimates in XPS 

Limit of Detection 
When acquiring XPS data a number of variables determine the quality of a spectrum in terms of 

signal-to-noise. Examples of variables are: 

1. X-ray flux 

2. Analyser pass energy 

3. Aperture settings 

4. Dwell time per data channel 

5. Area of sample available for analysis 

When measuring the signal for a transition from a given element, the absence or presence of a peak 

must be assessed in the context of the sample and the acquisition conditions. While a peak may be 

visible for data acquired at PE160, the same peak may be missing from a measurement of the same 

sample at PE20 simply because the time taken to measure the PE20 spectrum was insufficient to 

distinguish a peak from the background and noise when using the reduced signal on offer at the 

lower pass energy. The question therefore arises: for a given set of sample and acquisition 

conditions, at what point can it be concluded an element is present in the surface? 

It should be emphasised that the limit of detection is a value specific to a given measurement. The 

value for the detection limit depends both on the sample composition and the localised signal 

intensity, which may change due to instrumental measurement conditions and the proximity of 

peaks in the spectrum. For example, the detection limit for silicon in the presence of gold is different 

than for silicon in a carbon polymer. 

  

The reason for the difference in detection limit for these two samples is the position of the Si 2s 

peak and the background intensity beneath the Si 2s peak resulting from the Si 2p for the polymer 

and the Au 4f peak of gold. The noise for pulse counted intensity is assumed to be Poisson in nature 

and therefore the expected noise level is characterised by the square root of the counts per bin. For 

a conservative detection limit, three times the standard deviation for the given data is the measure 

indicated in the spectra above. 

The limit of detection for the Si 2s peak in the polymer sample would change if the amount of silicon 

decreased or the silicon was buried or only located near the sample surface, since all these scenarios 
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would alter the intensity of the background beneath the Si 2s peak. The limit of detection is 

therefore a value appropriate for a given measurement and is not transferrable between samples. 

Two methods for calculating the limit of detection are offered in CasaXPS 2.3.16: 

1. Assuming a peak can be measured within a quantification region, the peak characteristics in 

terms of background intensity and the energy interval over which a peak is spread are 

calculated from the region and used to estimate the limit of detection. 

2. No peak is evident in a region, the LOD or “Limit of Detection” background type is used to 

supplement the quantification region and allows the user to specify the interval over which 

the peak counts are spread. The LOD background type does not calculate a background but 

is equivalent to the SKIP background type and therefore must be defined within an existing 

region already defined over the same energy interval. 

Both methods for calculating the limit of detection populate reporting information such that the 

Region standard report on the Report Spec property page can be configured to include: 

1. The estimated limit of detection for a peak (LOD_ESTIMATE) 

2. The calculated peak intensity in terms of counts integrated over the width established for 

the peak (LOD_AREA) 

3. The peak width in terms of data bins used to calculate the limit of detection 

(LOD_PEAK_WIDTH) 

4. The background intensity used in the calculation of limit of detection estimate 

(LOD_BG_VALUE). 

These keywords can be entered into an appropriate configuration file for the Standard Report 
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When assessing if a peak is detectable, the LOD_ESTIMATE should be compared against the 

LOAD_AREA. If the LOD_AREA is greater than a chosen multiple (see below) of the LOD_ESTIMATE, 

then a peak can be detected. 

Limit of Detection Estimate 

Method adopted for measuring the limit of detection is based on a method developed by Alex Shard 

(National Physical Laboratory). 

Pulse counted intensities measured over a time interval are assumed to obey Poisson statistics and 

therefore if  counts are recorded for a given electron energy interval and time interval, the standard 

deviation for a sequence of identical measurements in theory is . 

For small peaks the intensity of the peak and the intensity of the background are approximately the 

same and therefore for small peaks one standard deviation in the measured intensities, for a 

background intensity , can be approximated by . 

Since a spectra may be measured using a variety of energy step-sizes as well as dwell-times, rather 

than using the intensity per acquisition bin, the intensity for the signal is defined as the intensity 

falling within a defined quantification region and above the defined background. 
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For an energy interval and acquisition time corresponding to the quantification region specified with 

background type Limit of Detection (abbreviation LOD) one standard deviation is given by , 

where  is the number of data channels falling within the region limits. The corresponding intensity 

against which this standard deviation can be compared is the sum of the positive background 

subtracted counts falling within the region limits . 

Assuming Poisson behaviour, the test for a peak is of the form 

 

For a 99% confidence interval and Poisson statistics . 

A complication is introduced by modern instruments with multiple detector systems. Pulse counted 

data measured using a single channeltron detector does obey Poisson statistics to a high degree, 

however multiple data streams merged to form a spectrum results in smoothing of the data as 

recorded. The factor used in the test for a peak varies depending on the detector system and must 

be determined appropriately for a spectrum and the application. 

To assist the selection of an appropriate factor, the Limit of Detection background type uses the 4th 

parameter ( ) in the cross-section field to draw an offset curve to the background located  

above the background. The following data illustrates a small F 1s peak and a region defined on an 

energy interval without a peak. 



 Copyright © 2011 Casa Software Ltd. www.casaxps.com 

5 
 

 

The above data was collected with a multiple detector instrument and as a result using a factor of 3 

in the test is likely to be more insensitive to peaks than might be expected. Adjusting the value of 

the 4th cross-section parameter causes the LOD Estimate to be scaled by the factor as specified by 

the cross-section parameter and so the LOD test can be made more sensitive to changes in the data 

around a peak.  

Note: the LOD estimate depends on the choice of width for the region. A narrow peak is easier to 

distinguish from the background at low intensities compared to the same number of counts spread 

out over many acquisition bins due to a broad peak structure. Selecting the correct width for the 

LOD region is therefore an important decision when establishing the LOD test. 

Limit of Detection Calculated from Quantification Regions 

While the “Limit of Detection” background type offers more control over the calculated LOD 

estimate value, all region background types calculate an estimate for the LOD. For all regions with 

background types other than “Limit of Detection” the LOD estimate is one standard deviation and 

can only be seen if configured using the Standard Report. The application of a factor as shown in the 

LOD test above must be introduced using a spreadsheet program based on the exported Standard 

Report. 

The Poisson distribution and Pulse Counted Data 
For pulse counted data it can be assumed there exists a count rate  such that 

1) The probability of a single counting event occurring in a small time interval of length  is 

approximately equal to . 

2) The probability of more than one counting event occurring in a small time interval  is 

negligible when compared to a single counting event occurring in the same time interval. 

3) The numbers of counting events in non-overlapping time intervals are independent. 
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Given these assumptions it can be shown that the number of counting events occurring in a period 

of time  has a Poisson distribution with parameter . If the random variable  denotes the 

number of counting events in the time interval  then  for  

Given that is a Poisson distributed random variable; the expected value and variance for  are 

as follows 

 

and 

 

Since for pulse counted XPS data  corresponds to the counts per bin, the standard deviation in the 

counts per bin is . 

Provided an XPS spectrum can be expressed as counts per bin, assuming Poisson behaviour for the 

noise in the data allows error estimates for peak fitting parameters to be calculated using a Monte 

Carlo approach. 

Monte Carlo Simulation 

 

A Monte Carlo procedure involves a simple sequence of steps aimed at estimating the precision 

error in output quantities from a calculation. By synthesising the problem before adding noise back 

to the synthetic problem followed by repeating the calculation, an understanding of how noise 

perturbs the current set of peak parameters is established. After iterating through these steps 

collecting the output parameters from each iteration, distributions for the output parameters are 

gather where the variation in the output values are due to the influence of noise on the calculation 

in question. For the problem of fitting peaks to data, the calculation is that of optimising a set of 

peak parameters so as to reproduce the data envelope in a least squares sense. 

Random Variables, Expectation and Variance in XPS 
A random variable in statistics is a function defined in terms of events resulting in a numerical value. 

For the purposes of XPS quantification, the numerical values might be the intensity of a peak as 
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measured by a quantification region, and while the values for the, so called, random variable are 

specific for a given set of conditions, the random element of the measurement process leads to 

slightly different experimental conditions and therefore many possible values for the intensity for a 

peak. That is, by repeating an experiment and recalculating the peak intensity different peak 

intensities are obtained and these variations are due to random noise in the measurement process. 

The analysis must therefore choose a value that best represents the peak intensity, which more 

often than not is the value obtained from a single measurement. However, if a measurement is 

performed multiple times, using the assumption the results obtained for each experiment is equally 

likely, the value for the peak intensity is typically obtained by calculating the mean average for the 

set of measurements. The mean average provides as estimate of the expected value for the random 

variable corresponding to the counts per seconds for electrons allocated to a peak. 

The term expected value for a random variable  with discrete values corresponding to a set of peak 

intensity measurements  with probability  is given by 

 

The uncertainty for such a measurement is obtained from the square root of the variance for the 

random variable as follows. 

 

The standard deviation for the random variable from the expected value is 

 

and is a measure for the spread from the expected value in units of the expected value. 

When a single measurement is used to estimate the intensity for a peak, the expected value is 

approximated by the peak intensity integrated from the data envelope. An estimate for the 

uncertainty is obtained by applying Monte Carlo methods to the intensity calculation. Each peak 

used in XPS quantification represents a distinct random variable for which expectation and variance 

are calculated. While in general random variables may potentially be dependent, random variables 

measured from XPS quantification regions are assumed to be independent. 

Intensity and Uncertainty for Multiple Peaks from a Single Transition 
The intensity for a transition may be split between a pair of doublet peaks, such as is the case for Zn 

2p, where a single integration region provides a poor definition of the background and therefore the 

intensity of the transition is measured using two regions defined independently for these widely 

separated Zn 2p1/2 and Zn 2p3/2 peaks. 
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Provided the peak area is scaled using the combined RSF appropriate for adjusting the integrated 

area from both peaks in the doublet, the total intensity is obtained by summing the intensity from 

the two quantification regions. This statement is equivalent to the statement that the expected 

value for the sum of two random variables and ,  is the sum of the individual 

expected values 

 

The random variables and  represent the peaks intensities for the Zn 2p1/2 and Zn 2p3/2 peaks. 

When the uncertainty for these two peaks is calculated based on two quantification regions, the 

uncertainty for the summed peak intensity is obtained by considering the variance for each random 

variable and the covariance between the random variables. The variance is the square of the 

standard deviation therefore the standard deviation for the summed peak intensity is obtained using 

 

For independent random variables corresponding to region areas corrected for transmission, escape 

depth and relative sensitivity,  therefore 
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Note: intensities measured from peak fitting typically are not independent, therefore 

 for overlapping peaks. 

Calculating the Ratio of Peak Intensities and Uncertainties 
Consider, by way of example, the ratio of sulphur to zinc measured from the following survey 

spectrum. The regions selected for the ratio are not the most intense peaks from either sulphur or 

zinc, however the peaks are close in energy and therefore both the transmission and sampling depth 

for these transitions are well matched. The low intensity for these peaks is also useful to illustrate 

the uncertainty associated with calculating the ratio for these elements from XPS data. 

 

In general, the variance for a quotient of two random variables  and  with expected values  and 

, and variances  and  is approximated by 

 

 

 

 Zn 2p3/2 Zn 2p1/2  Zn 2p 

Corrected Area 37932.6 18051.9  55984.5 

St.Dev. 76.1778 120.328  142.4145 
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Since the random variables corresponding to the peak intensities measured from distinct energy 

intervals are independent measurements,  therefore for peak intensities measured 

using regions 

 

The uncertainty in the ratio of two peak intensities measured from regions is obtained from 

 

where  and  are RSF, transmission and escape depth corrected intensity and uncertainty 

quantities. In CasaXPS these are calculated using a Monte Carlo procedure assuming the counts per 

bin obey Poisson behaviour. 

Thus, using the Custom Report on the Report Spec property page of the Quantification Parameters 

dialog window, the relevant information can be gathered as follows. 

1. Select the VAMAS block containing the survey spectrum in the right-hand pane of the 

experiment frame. 

2. On the Regions property page, press the Calculate Error bars button. This will ensure the St 

Dev for the peak areas are available to the Custom Report. 

3. Use the StDev button on the Custom Report to create entries suitable for calculating the 

ratio and the uncertainty in the ratio using a spreadsheet program. Alternatively create a 

Custom Report configuration file in the CasaXPS/CasaXPS.CQL directory already to generate 

the ratio and the uncertainty for the ratio. Load the file using the Formula column header 

button. 
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4. Press the Area Report button on the Custom Report to generate the ratio together with the 

uncertainty in the ratio. 

 

Uncertainty in Percentage Area 
The problem of determining the uncertainty in atomic concentration measured using quantification 

regions provides an insight into the problems involved when area measurements are made using 

overlapping peaks. Atomic concentration for an element measured from regions is obtained by a 

ratio of two quantities, namely, the intensity of the element and the total intensity summed over all 

regions corresponding to each element used in the measurement. The concentration measured from 

region  out of a set of  quantification regions is given by 
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Since the measurement for each peak intensity  is influenced by noise, the uncertainty in  must 

be determined by considering two random variables  and  corresponding to the possible 

outcomes for the values  and , respectively. While the intensities measured from 

quantification regions are assumed to be independent, the random variables as stated  and  are 

not independent since  includes . To correctly combine error estimates for each of the  

in order to obtain an error estimate for  requires a determination based on the random variable 

, where the functional form for the random variable  corresponding to the 

atomic concentration measurements  is of the form 

 

When expressed in this form,  is defined in terms of two independent random variables  and . 

Since for independent random variables  and . , it is therefore possible to express 

the standard deviation of  in terms of the variance of  and  only. This is in contrast to the 

random variables  and  as, in general,  and so the  cannot be expresses in 

terms of  and  alone. 

 

The analogous problem, involving intensities measured using overlapping synthetic components 

optimised to fit a data envelope, the percent area calculation yields numerous random variables 

with varying degrees of dependency with one another. For data in which multiple overlapping peaks 

are used to measured intensity that cannot be reduced to a set of independent random variables, 

determining the uncertainty in the percentage area from the uncertainties in the peak areas is far 

from trivial. Fortunately this problem is similar in nature to the initial problem of determining the 

uncertainties in the peak fitting parameters. Monte Carlo simulation can be similarly applied to the 

percentage area calculation; these Monte Carlo results are the uncertainties available for display via 
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the Components annotation window and inclusion in quantification reports on the Report Spec 

property page of the Quantification Parameters dialog windows. 

Uncertainties are typically reported in terms of confidence intervals. For normally distributed 

measurements about a mean, 68.3% of the values lie within one standard deviation of the mean. 

Other than adopting the 68.3% criterion the availability of value distributions from a Monte Carlo 

simulation means standard formulae for variance and covariance are not required to establish the 

confidence interval for a given value. It is sufficient to collect the set of parameter values from these 

Monte Carlos distributions which lie within an error ellipsoid, the dimensions of which ensure 68.3% 

of the points belong to this set. The dimensions of the ellipsoid provides the relationship between 

the different distributions in terms of correlation, and the projection of the extreme value for each 

parameter within the ellipsoid defines the ranges for which the assertion that the expected values 

are precise with a probability of 0.683 is supported. 

Quantification Regions and Statistical Independence 

Noise and Quantification Regions 

Peak intensity measured using quantification regions involve integrating the background-subtracted 

counts per second with respect to energy yielding an area which is corrected for transition 

probability and instrumental intensity variations. These corrected area values are used to calculate 

the relative intensity for an element in a sample. Intensity adjustment is achieved using a scaling 

factor computed from the relative sensitivity of the transition, the transmission function for the 

instrument response, and a correction for escape depth dependency on kinetic energy of the 

recorded electrons. 

 

The reported intensity of a peak is an estimate, and as an estimate requires additional information 

to convey the level of confidence which can be placed in the intensity. Noise associated with the 

measured data influences the value computed for the peak intensity and is the source for precision 

errors in peak intensity. However, predominantly noise feeds into the measured intensity through 

the background calculation particularly where a background depends heavily on the intensity of data 

at the limits of the energy interval over which the background is defined. 
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The level of confidence is not simply a characteristic of the signal-to-noise in the data, but is also 

influenced by the statistic calculated from the data. The following two statistics measured from the 

same data illustrates this point. 

By way of example, consider a Li2SO4 sample where the lithium peak, representing a significant 

proportion of the surface material, is nevertheless small compared to the S and O peaks. The first 

statistic measured from the data is the atomic concentration. Atomic concentration must be 

calculated from scaled peak areas. The act of scaling the peak areas also scales the effect of noise 

and the resulting percentage concentrations with 68.3% confidence intervals are displayed in the 

table overlaying the spectrum below. 

 

A similarly calculated statistic, computed without any intensity scaling, offers a different table. By 

omitting intensity scaling the uncertainty in the value computed for oxygen has dramatically 

improved compared to the uncertainty for the atomic concentration calculation above. 

 

These two calculations provide an example of how an error associated with the measurement of a 

small peak, in this case Li, is transformed into a large error in what would otherwise appear to be a 

precise measurement, namely O 1s, as a consequence of simply applying relative sensitivity 
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correction to the peak intensities. The lesson to be learnt from these calculations is it is worth 

investing the time to improve the signal-to-noise in the lithium peak, which will be the limiting factor 

in determining the atomic concentration for the sample in question. 

Ideally, data should be acquired to achieve a consistent signal-to-noise for each peak used to assess 

the composition of a sample. A typical measurement aimed at quantifying the surface composition is 

performed using a survey spectrum where a fixed step-size and acquisition time is used to measure 

all peaks within a wide energy range. The signal-to-noise ratio varies depending on factors such as 

the background and the relative sensitivity of the peaks used in the quantification, so peak area 

measurements from a single survey spectrum tend to vary in precision. Narrow scan spectra with 

differing dwell-time are a means of focusing acquisition time on peaks such as the Li 1s peak for 

which an improved quantification would result from increasing the dwell-time compared to the O 1s 

data. 

Calculating Uncertainty for Peak Intensity measured from Regions 

The method used to calculate uncertainties for peak intensity measured using a quantification 

region assumes noise in the spectral data obeys a Poisson distribution. A random number generator 

is used to add noise to the data consistent with a noise distribution having a mean and variance 

equal to the counts per bin. A data envelope is synthesised from the raw spectrum to which 

simulated noise is added before calculating the peak intensity from the synthetic data. The intention 

is to simulate an identical experiment to the one yielding the original spectrum. 

To illustrate the consequences of simulating a fresh measurement an example using a linear 

background type highlights how changes to the calculated background occur and therefore alter 

peak intensity measured from differing but essentially identical data. Note how the intensity at the 

end points used to define the background change as a result of noise. 
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Repeating the simulation step and collecting the set of peak intensities calculated from these data 

provides a distribution of possible values from which a sample variance can be calculated. 

Two methods can be used to measure the standard deviation from the simulated distribution 

containing  simulations: 

1. The standard deviation is calculated using the sample variance  

2. Alternatively the interval is computed to ensure number of distribution points closest to the 

mean for the distribution, , includes 68.3% of the distribution points. 

The error estimates based on both methods are reported above the distribution plotted below for 

the variation in peak area of a nitrogen 1s spectrum. 

 

Estimating the uncertainty for a peak based on a region assumes the peak intensity is independent 

of any other measurements similarly made using quantification regions. While the assumption of 

independence is generally acceptable for peak intensity measured from regions, there are 

circumstances in which the assumption is not strictly true.  

 

 

Correlated peak intensities due to the 

juxtaposition of quantification regions. 
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If two quantification regions are defined for K 2p and C 1s transitions, firstly locating the regions one 

directly next to the other, then secondly adjusting the regions to ensure a significant separation 

between the two regions, plotting the deviation from the mean peak intensities for these two cases 

illustrates potential correlation caused by quantification regions. The reason a dependency between 

the two regions is introduced in the former case, where the regions connect, is the common end and 

start limit for the K 2p and C 1s regions allows the same noise to influence both backgrounds 

beneath the K 2p and C 1s data. The dependency is due to the common data channels used in the 

calculation. Preventing the regions from using the same data to calculate the backgrounds removes 

the dependency between the two peak intensities. 

 

If peak intensities become correlated, the uncertainty in derived statistics which assume 

independence will potentially under estimate the uncertainty in these derived statistics. For 

example, if the statistic desired is the sum of the K 2p and C 1s peak intensities, for the correlated 

definition for the quantification regions the uncertainty in the summed intensity would require 

knowledge of the variance for both peaks and the covariance calculated from both distributions. The 

following table represent an error matrix calculated from the two distributions generated from the 

peak intensities for the K 2p and C 1s quantification regions. 

Error Matrix 
  

 
1:Area:K 2p 2:Area:C 1s 

1:Area:K 2p 4816.71 1393.72 

2:Area:C 1s 1393.72 3005.49 
To estimate the uncertainty in the statistic  the formula 

 

must be used where random variables and  represent the peak intensity values. The 

uncertainty in the summed peaks is therefore 

 

Uncorrelated peak intensities due to the 

distinct quantification regions. 
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An alternative method for calculating the same uncertainty is to introduce a third region spanning 

both the K 2p and C 1s peaks with background type SKIP. A background type SKIP causes the 

quantification region to use the background calculated by other regions defined on the data. The 

peak area calculated from the third region is simply the sum of the two regions defined for K 2p and 

C 1s data. Calculating the distribution generated by a Monte Carlo simulation for the region 

measuring the sum of the K 2p and C 1s peaks yields an uncertainly of . If the covariance 

between the K 2p and C 1s distributions is assumed to be zero, that is, these distributions are 

assumed to be independent the uncertainty calculated by summing the variances alone would be 

88.4, a value which underestimates the uncertainty in the summed intensity. 

Provided quantification regions are defined to be independent, the uncertainty can correctly be 

calculated by summing the variances. Performing the equivalent calculation as above but for regions 

defined with distinct start and end limits, the outcome is as follows. 

 

Again using a third region to span both K 2p and C 1s peaks from which an estimate for the 

uncertainty in the sum of the two regions can be made yields a value for the uncertainty of . 

Thus provided an element of care is used to ensure quantification regions are indeed independent of 

one another, uncertainties in derived statistics such as ratios and atomic concentrations can be 

calculated using only the variance obtained from distributions calculated by Monte Carlo simulation. 

The example presented here where quantification regions are defined to be dependent is of greater 

relevance to uncertainties in statistics derived from peak intensities measured using synthetic 

component peaks in a peak model. If a common background is used beneath a set of apparently 

independent peaks, including only the variance for the uncertainty in the peak parameters will 

potentially underestimate the true uncertainty in derived statistics. For this reason it is necessary to 

perform the analysis for peak parameter uncertainties in the context of joint distributions rather 

than each distribution in isolation. 

 

 

 

Error Matrix 
  

 
1:Area:K 2p 2:Area:C 1s 

1:Area: K 2p 4036.95 -85.4642 

2:Area: C 1s -85.4642 1863.94 
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Uncertainties Calculated from Peak Model Parameters 

A simple problem of identifying peak intensity for a pair of C 1s transitions separated sufficiently to 

expect a degree of independence for intensities illustrates the danger of assuming independent for 

these types of measurements when considering uncertainties in atomic concentration calculations. 

 

A scatter plot for the peak intensity measured using these two synthetic components reveals a 

correlation between these two intensity values not dissimilar to the dependent regions above. The 

background calculation which spans both peaks is the source for the connection between these two 

peak intensities. Any statistic calculated from these two intensity values would require a non-trivial 

uncertainty calculation before a confidence interval could be established for the statistic. 

If two error distributions exhibit independence, the probability for a quantity lying within one 

standard deviation of the mean is presumed to be 0.683. The measured quantity and corresponding 

uncertainty cares little for other independent measurements. When two or more quantities change 

depending on the values measured within the set of quantities of interest the problem changes as 

follows. The set of acceptable parameter sets changes from simply deviation from the mean in each 

distribution to considering the deviation from a centre of mass for the joint distributions. For a point 

within the joint distribution to be accepted as a valid set of parameters, all parameters representing 

the point must lie within a volume of space containing 68.3 % of the joint distribution. Since this 

criterion for an acceptable parameter set is more exacting than the one used for independent 

parameters, some values which would have been accepted as within the 68.3 % limit for a 

parameter taken in isolation will be rejected by the collective perspective requiring all parameters 

are within the defined limit, and therefore uncertainties in the individual parameters increase when 

dependences are involved. 

When dealing with multiple parameter distributions the term “lie within a volume of space” is 

somewhat imprecise. Precision is given to this statement by choosing the region of space bounded 

by an ellipsoid taking on the proportions defined by the variation in the distribution of parameter 

sets about the centre of mass. These dimensions for the ellipsoid are obtained from the principal 

axes calculated for the distributions. In using this criterion to partition the set of parameter sets into 
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those lying within a volume containing 68.3 % of the parameter sets and those outside the volume 

as prescribed, a definition for the confidence region is made specific. 

An example based upon an O 1s data envelope fitted with three component peaks provides an 

illustration for the concept of an ellipsoid region of interest. The parameters calculated from the 

three component peaks when fitted to the O 1s data are analysed via Monte Carlo methods to 

produce the 3D distribution for the errors in the area parameters. The concept of an error ellipsoid is 

used in CasaXPS to provide the measure of how close a particular set of fitting parameters are to the 

distribution centroid. Parameter sets closest to the centroid, in an elliptical sense, such that 68.3 % 

of the parameter sets are bounded by a common ellipsoid are marked with a cross. 

 

Once a list of parameter sets are ordered according to proximity to the centre of mass, an 

uncertainty for each parameter is obtained by determining the extreme points from the list 

containing 68.3% of the distribution points. The method for determining the range of possible 

acceptable outcomes is therefore analogous to method 2) above for calculating the standard 

deviation from a single Monte Carlo distribution obtained for a quantification region. 

Confidence intervals are offered to indicate how precise a value is computed from the data given a 

peak model. The uncertainty estimate is exactly as stated, an estimate, with the merit of indicating 

when a parameter value cannot be relied upon. The values calculated by CasaXPS are only as good 
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as the method used and the applicability of the definition for the confidence region to the 

distribution data. Calculating the confidence intervals for the parameters from the Monte Carlo data 

directly simply provides an error estimate for the fitting parameters which should be used to 

compare uncertainties obtained by one peak model against another. If a different method or 

definition of the confidence region were adopted the values for the uncertainties would be different 

from those reported by CasaXPS. It is therefore important to appreciate uncertainties are context 

sensitive, where the context is both the method used to calculate the uncertainty from a set of 

outcomes to an experiment and the criterion used to decide if a result is within the set of acceptable 

values. 

Also, as with all numerical methods, there are circumstances where any given method will fail. The 

result of the Monte Carlo simulation provided in VAMAS format and the ability to plot these 

distributions provides a means of assessing the uncertainty calculation itself. For example, a given 

peak model may be unstable resulting in two very different outcomes depending on the noise in the 

data. Plotting the distributions might show two or more clusters of parameter sets with distinct and 

separate centres. Under these conditions assuming the centre of mass as being representative of the 

distribution is possibly wrong and an ellipsoidal confidence region only has context for a distribution 

with a single centre. Such an outcome for the error distributions is indicative of a poorly defined 

peak model. Adjusting constraints will usually alter the result to one consistent with the uncertainty 

calculation and often with the beneficial consequence of improving the stability and precision of the 

peak model too. 

Peak Fitting and Error Estimates 
Quantification of a sample using XPS is typically presented as a set of atomic concentrations for the 

elements evident in the data. Evidence of an element in the sample consists of a set of peaks in the 

spectra and the ability to measure the contribution from each peak to an atomic concentration 

calculation is dependent on separating peaks arising from different elements. The separation of 

overlapping peak intensities is achieved by constructing a peak model from known lineshapes and 

fitting these component peaks to the data envelope. The following data envelope is from a silicon 

dioxide sample. The measured data envelope is a simple example of two component peaks. 
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The usual objective for modelling a data envelope is to estimate the relative intensity of elements 

using peak area. XPS often presents situations where peaks can be identified from the same element 

with differing position and FWHM as well as from different elements with coincidently overlapping 

peaks. When peaks overlap there are two problems involved in the calculation: the first, and 

instrumental in the atomic concentration calculation, involves determining the peak area for each 

peak underlying a peak structure; the second problem is to estimate the precision associated with 

these area measurements. The subject addressed in this section is the latter, namely, assuming a 

peak model is correctly defined, estimate the uncertainty in the peak area values determined from 

the model. 

Peak Parameters 

Consider the case in which a component peak is defined by a Gaussian lineshape: 

 

The functional form in Equation (1) contains three parameters ,  and  which alter the mean 

position for the functional form, the area between the abscissa and the function, and the spread of 

peak area over the energy axis, respectively. Given a data envelope which can be well approximated 

by a single Gaussian as defined by Equation (1), the problem is to choose values for these 

parameters ,  and  which minimise the chi square 

 

where  are the measured data intensities corresponding to energies  

with individual standard deviations . 

There are many methods for minimising the . Essentially these methods iteratively adjusting the 

current parameter set ,  and  until the  function appears to be at a minimum, and the 

method chosen to minimise the  is of no importance to the problem provided the method yields 

a reliable minimum in a timely fashion. 

Monte Carlo Simulation 

The area for the Gaussian in Equation (1) can be calculated from the three fitting parameters once a 

minimum is achieved. The uncertainty for the measured area may be estimated by taking a set of 

identical samples, repeating the measurement several times and fitting the same model Gaussian to 

these independent measures. Since the variable element in each determination of the peak area is 

the noise contribution to the measured signal, the fitting parameters will only vary from the first set 

determined due to the instrumental noise contribution in the data. 

The principle behind Monte Carlo error estimation is analogous to the experimental method just 

described. The only difference between repeating the experimental measurement and the Monte 

Carlo approach is noise is introduced into the results from a single measurement using a random 

number generator rather than allowing the noise inherent in the measurement process for a 

sequence of measurements to alter the initial conditions to the fitting procedure. The output from 
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both approaches is a list of fitting parameters differing from the original values only due to the 

influence of noise. 

The uncertainties for the adopted fitting parameters and therefore the peak area are calculated 

from these variations in the parameter sets resulting from noise. One difference between an 

empirical approach and Monte Carlo is the measurement process will necessarily introduce noise 

characteristic of the instrument and sample while the Monte Carlo method requires a theoretical 

specification of the noise. 

For pulse counted data measured from a large sample of random events, in this case induced by 

photoionisation, the noise distribution is modelled using a Poisson distribution where the standard 

deviation in the recorded intensity in a data channel is the square root of the counts per bin. The 

validity of assuming a Poisson noise distribution for the counts per bin is perhaps the weak link in 

estimating the errors using Monte Carlo or any other theoretical methods reliant on knowledge of 

the noise distribution. Problems with such an assumption exist for instruments for which data are 

collected using multiple detectors or for detecting systems which are not strictly reporting raw 

intensities. The consequence of multiple detector systems is the raw data appears smoothed by the 

averaging procedures typically adopted when combining spectral information from multiple data 

streams.  

A simple procedure for testing the validity of assuming Poisson statistics for the spectral data bins is 

to measure an energy range without any peaks in the data. Using the Regions property page, add a 

region to the spectrum and select the regression background type for the region. A linear 

background is added to the data chosen to minimise 

 

by calculating the linear parameters  and  over the interval defined by the region. The standard 

deviation reported for the residual will be close to unity suggests the noise in the data channels obey 

Poisson statistics. 

The following data are from a multiple detector XPS instrument. The residual standard deviation is 

too good and is the result of merging multiple data streams to produce the spectrum. 
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Error estimates assuming Poisson distributed noise will be conservative for cases where the data 

have a better than expected residual standard deviation. 

Data collected using a single channeltron electron detector typically results in the expected Poisson 

behaviour. The following data are collected with such a detection system which is typical of older 

instruments. However, it is also possible that an instrument can introduce more than the expected 

noise, in which case the uncertainties will be under estimated by the Monte Carlo approach. 

 

Estimating the Errors in Peak Parameters 

For uncorrelated fitting parameters, one standard deviation in the distribution for the individual 

fitting parameters offers the uncertainty interval with a  confidence. Unfortunately the only 

time peak fitting is performed is precisely when the peaks are correlated and therefore the fitting 

parameters such as those in Equation (1) are correlated too. Instead of considering the range of 

variation for each individual parameter is becomes necessary to consider a multi-dimensional 

distribution from which a region containing  of the parameter sets must be determined and 

by projecting the extent of the region within which  of the possible parameter sets lie from 

the mean, the uncertainty for each of the fitting parameters can be established. 

 

 

To illustrate the procedure consider 

the case where two peaks are defined 

which model a data envelope and for 

which the peaks are assumed to have 

fixed position and FWHM but the area 

for each of the peaks is allowed to 

vary. After performing a Monte Carlo 

simulation for such a peak model, the 

two free fitting parameters produce 

two distributions from which the 

uncertainties for the areas can be 

estimated. 
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A scatter plot of these two parameter distributions illustrates anti-correlation between these two 

fitting parameters and also highlights the set of points belonging to the region which contains 68.3% 

of the simulations outcomes. The scatter plot represents the outcome for the peak areas 

determined for each optimisation step in the Monte Carlo procedure by positioning a marker at the 

coordinate . These markers are filled with a colour determined by the size of 

the coordinates relative to the mean for the individual distributions, where each coordinate axis is 

assigned to a colour intensity red, green, blue (RGB) as a right-handed coordinate system. Markers 

within the set of peak areas lying within an elliptical (in the case of a 2D plot) region containing 

 of these coordinates are additionally marked with a cross. An estimate for the uncertainty in 

these two peak area parameters is obtained by projecting the extreme values from this 2D 

confidence region onto the coordinate axes as illustrated below. 
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The principal axes determined from the parameter distribution are also shown. The length of these 

axes are three standard deviations in the distributions obtained from the coordinates of the area 

parameters after transformation to coordinates with respect to the principal coordinate axes. 

While discussed in terms of two fitting parameters, the principles illustrated with 2D scatter 

diagrams can be extended to -dimensional problems involving  fitting parameters. The 

visualisation of these  dimensional distributions is limited to a projection of these distributions 

onto at most 3D scatter plots, but the mathematics for determining the confidence region in -

dimensional space remains the same and can be used to obtain error estimates for fitting problems 

requiring multiple component peaks with parameters equivalent to those illustrated by Equation (1). 

Principal Axes and Peak Fitting Uncertainties 
When peaks are fitted to data the answer returned by the fitting procedure for the peak areas is just 

one of many possible answers. The source for these alternative outcomes to the fitting algorithm is 

random variations in the data due to noise which differs with each measurement. The influence 

noise on the outcome is dependent on the peak model used to approximate the data envelope and 

the nature of the envelope in terms of underlying peak proximity. 

The following data from a sample measured after bombardment with argon ions by XPS pulse 

counted signal will be used to facilitate a discussion of the issues associated with estimating errors in 

the parameters adjusted to fit the synthetic peaks to the data. An energy range appropriate for 

electrons emitted from the Ar 2p core level provides an example of a doublet electron state yielding 

two overlapping peaks. The discussion will focus on the determination of the peak areas for each of 

the Ar 2p1/2 and Ar 2p3/2 component peaks. 

 

A Monte Carlo procedure is used to simulate repeating the measurement many times and with each 

simulated data set the peak area is recalculated. The result of the Monte Carlo simulation is a table 

of variations from the initial peak parameters calculated from the Ar 2p spectrum. In this current 

example of fitting two synthetic peaks the number of adjustable parameters is six, namely, two sets 

of area, position and FWHM parameters, one set per synthetic peak. While these six parameters 
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yield six error distributions, the discussion will proceed by focusing only on the two area 

distributions in isolation. This is only to highlight the nature of the analysis involved in understanding 

error distributions. The determination of the uncertainties for these area parameters in CasaXPS 

includes all fitting parameters and not just the two distributions now discussed. 

Methods for Characterising Trends in Scatter Plots 

The peak areas, measured relative to the area parameter calculated from the data, are plotted for 

the two peaks fitted to the Ar 2p spectrum as a set of points on Cartesian axes. Since the two peaks 

overlap it is logical that if one peak increases in area, to fit the same data envelope, the second peak 

must reduce in area. It is therefore reasonable to believe the scatter plot for these area parameters 

is anti-correlated. A regression line calculated for the set of coordinates 

 

supports this theory. 

 

  

 

The trend in the above scatter diagram is 

illustrated using a regression line. The 

values  are called the 

residuals and are depicted graphically as 

vertical lines between the data points and 

the line of best fit. 

The line of best fit is therefore considered 

to be the line which minimises the sum of 

the squares of the residuals. 

 

A Scatter Diagram in which the y-axis 

is the area calculated for the Ar 2p1/2 

peak and the x-axis is the area for the 

Ar 2p3/2 peak. The peak areas are 

plotted centred with respect to the 

initial values for the areas determined 

from fitting the model to the data and 

normalised to these initial areas. 
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While a regression line is often used to determine the line of best fit, the error distribution is visually 

different in nature from the regression line. The regression line is limited to minimising the residuals 

with respect to one distribution only. An alternative approach for lines passing through the origin is 

to consider the shortest distance from each point on the scatter plot to a line of best fit. If the set of 

points are considered to be the positions for a set of unit mass particles relative to the centre of 

mass located at the origin, then the problem of calculating the lines of best fit for these two 

distributions is equivalent to finding the principal axes for the moment of inertia for a collection of 

particles. 

 

 

  

  

  

  

  

 

Consider a set of particles of unit mass with 

position vectors  and a line  

making an angle  with the positive  direction. 

Let the shortest distance between the point with 

position vector  and the line  be . 

A line of best fit through the origin may be 

obtained by calculating the minimum for 
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Let the unit vector in the direction of the line  be  the  

 

Therefore  and so 

 

 

 

Let  

 

 

Since  can be expressed in terms of the angle  between the line  and the -axis, the 

expression for  can also be expressed in terms of the angle ; the values ,  and  are all 

calculated from the data and are therefore known. 

 

Therefore 

 

The line of best fit can be obtained by minimising  with respect to . 

 

Since  and  

 

The minimum in  occurs when  therefore 
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Applying the result to the two distributions for the area parameters from the Ar 2p spectrum the 

minimum for  occurs for ( ,  and 

 

 

 

Therefore two extrema occur for lines at  and  with respect 

to the -axis. 

If the set of data points are transformed by rotation by  the image for the distributions 

appears as follows. 

 

An alternative means of finding the principal axes which generalises to multidimensional 

distributions is to minimise the function  subject to the constraints 

. 

Applying the method of Lagrange multipliers to this constrained optimisation problem involves 

minimising 

 

The extrema are obtained by the condition  and  

 and  

Resulting in the simultaneous equations 
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or in matrix notation 

 

A non-trivial solution is only possible if these two lines are parallel which means mathematically  is 

an eigenvalue of the matrix 

 

The eigenvalues and eigenvectors for  are the principal axes shown on the scatter diagram. 

A geometric interpretation, at least for the 2D problem, is the principal axes are the directions about 

which the variation in the data points plotted in the plane are a minimum in one direction and a 

maximum in the orthogonal direction. Principal axes are calculated for multi-dimensional 

distributions by performing an eigenanalysis. The residual option on the toolbar of CasaXPS turns 

these principal axes on and off when data are displayed as a scatter plot. 
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Principal Component Analysis and Principal Axes 

 

The analysis for  can be applied for  resulting in the following optimisation problem. 

Minimise  subject to the constraint  

Where again  

 

So applying the method of Lagrange Multipliers leads to finding the eigenvectors and eigenvalues of 

 

where  and . The matrix  is the covariance matrix associated with a Principal 

Component determination. The eigenvalues for and  are identical since both are calculated from 

the same quadratic 

 

The eigenvectors for  and  are related by a reflection in the  axis. The principal axes can 

therefore be obtained using either  or . 

Line of Best Fit using  

As an alternative to linear regression, in general, a line of best fit in the moment of inertia sense, 

where the distance between a point and the line is measured using the shortest distance from the 

point to the line, is obtained by calculating the gradient for the line of best fit passing through the 

mean coordinate for the two data distributions, with gradient obtained from the principal axis vector 

determined from the matrix . 

  

  

  

  

  

  

 

Consider a set of particles of unit mass with 

position vectors  and a line  

making an angle  with the positive  direction. 

The direction cosines for the line  are 

. 

A line of best fit through the origin may be 

obtained by calculating the minimum for 

subject to the constraint  
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Applying the notation used for linear regression, the mean centred distributions are summarised as 

follows: 

 

where 

 

The equation of best fit  is given by 

 

and 

 

 

For the scatter plot of the peak area for each of the two Ar 2p peaks relative to the initial values for 

the peak areas in the Monte Carlo simulation, the two possible lines of best fit have gradient  in 

the case of linear regression, while the line of best fit based on principal axis has gradient . 

Both lines pass through the mean coordinate for the data . 

 


