A
[CasaxPs

Copyright © 2011 Casa Software Ltd. www.casaxps.com

Uncertainty Estimates in XPS

Limit of Detection
When acquiring XPS data a number of variables determine the quality of a spectrum in terms of
signal-to-noise. Examples of variables are:

X-ray flux

Analyser pass energy
Aperture settings

Dwell time per data channel

vk wNe

Area of sample available for analysis

When measuring the signal for a transition from a given element, the absence or presence of a peak
must be assessed in the context of the sample and the acquisition conditions. While a peak may be
visible for data acquired at PE160, the same peak may be missing from a measurement of the same
sample at PE20 simply because the time taken to measure the PE20 spectrum was insufficient to
distinguish a peak from the background and noise when using the reduced signal on offer at the
lower pass energy. The question therefore arises: for a given set of sample and acquisition
conditions, at what point can it be concluded an element is present in the surface?

It should be emphasised that the limit of detection is a value specific to a given measurement. The
value for the detection limit depends both on the sample composition and the localised signal
intensity, which may change due to instrumental measurement conditions and the proximity of
peaks in the spectrum. For example, the detection limit for silicon in the presence of gold is different
than for silicon in a carbon polymer.
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The reason for the difference in detection limit for these two samples is the position of the Si 2s
peak and the background intensity beneath the Si 2s peak resulting from the Si 2p for the polymer
and the Au 4f peak of gold. The noise for pulse counted intensity is assumed to be Poisson in nature
and therefore the expected noise level is characterised by the square root of the counts per bin. For
a conservative detection limit, three times the standard deviation for the given data is the measure
indicated in the spectra above.

The limit of detection for the Si 2s peak in the polymer sample would change if the amount of silicon
decreased or the silicon was buried or only located near the sample surface, since all these scenarios
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would alter the intensity of the background beneath the Si 2s peak. The limit of detection is
therefore a value appropriate for a given measurement and is not transferrable between samples.

Two methods for calculating the limit of detection are offered in CasaXPS 2.3.16:

1.

Assuming a peak can be measured within a quantification region, the peak characteristics in
terms of background intensity and the energy interval over which a peak is spread are
calculated from the region and used to estimate the limit of detection.

No peak is evident in a region, the LOD or “Limit of Detection” background type is used to
supplement the quantification region and allows the user to specify the interval over which
the peak counts are spread. The LOD background type does not calculate a background but
is equivalent to the SKIP background type and therefore must be defined within an existing
region already defined over the same energy interval.

Both methods for calculating the limit of detection populate reporting information such that the
Region standard report on the Report Spec property page can be configured to include:

1.

The estimated limit of detection for a peak (LOD_ESTIMATE)

The calculated peak intensity in terms of counts integrated over the width established for
the peak (LOD_AREA)

The peak width in terms of data bins used to calculate the limit of detection
(LOD_PEAK_WIDTH)

The background intensity used in the calculation of limit of detection estimate
(LOD_BG_VALUE).

These keywords can be entered into an appropriate configuration file for the Standard Report
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When assessing if a peak is detectable, the LOD_ESTIMATE should be compared against the
LOAD_AREA. If the LOD_AREA is greater than a chosen multiple (see below) of the LOD_ESTIMATE,
then a peak can be detected.

Limit of Detection Estimate
Method adopted for measuring the limit of detection is based on a method developed by Alex Shard
(National Physical Laboratory).

Pulse counted intensities measured over a time interval are assumed to obey Poisson statistics and
therefore if I counts are recorded for a given electron energy interval and time interval, the standard

deviation for a sequence of identical measurements in theory is V1.

For small peaks the intensity of the peak and the intensity of the background are approximately the
same and therefore for small peaks one standard deviation in the measured intensities, for a

background intensity B, can be approximated by v/B.

Since a spectra may be measured using a variety of energy step-sizes as well as dwell-times, rather
than using the intensity per acquisition bin, the intensity for the signal is defined as the intensity
falling within a defined quantification region and above the defined background.
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For an energy interval and acquisition time corresponding to the quantification region specified with
background type Limit of Detection (abbreviation LOD) one standard deviation is given by VBN,
where N is the number of data channels falling within the region limits. The corresponding intensity
against which this standard deviation can be compared is the sum of the positive background
subtracted counts falling within the region limits LODgrg 4.

Assuming Poisson behaviour, the test for a peak is of the form

if (LODygga > factor xVBN) then "peak detected"
For a 99% confidence interval and Poisson statistics factor = 3.0.

A complication is introduced by modern instruments with multiple detector systems. Pulse counted
data measured using a single channeltron detector does obey Poisson statistics to a high degree,
however multiple data streams merged to form a spectrum results in smoothing of the data as
recorded. The factor used in the test for a peak varies depending on the detector system and must
be determined appropriately for a spectrum and the application.

To assist the selection of an appropriate factor, the Limit of Detection background type uses the 4™
parameter (T,) in the cross-section field to draw an offset curve to the background located TyvVB
above the background. The following data illustrates a small F 1s peak and a region defined on an
energy interval without a peak.
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The above data was collected with a multiple detector instrument and as a result using a factor of 3
in the test is likely to be more insensitive to peaks than might be expected. Adjusting the value of
the 4™ cross-section parameter causes the LOD Estimate to be scaled by the factor as specified by

the cross-section parameter and so the LOD test can be made more sensitive to changes in the data
around a peak.

Note: the LOD estimate depends on the choice of width for the region. A narrow peak is easier to
distinguish from the background at low intensities compared to the same number of counts spread
out over many acquisition bins due to a broad peak structure. Selecting the correct width for the
LOD region is therefore an important decision when establishing the LOD test.

Limit of Detection Calculated from Quantification Regions

While the “Limit of Detection” background type offers more control over the calculated LOD
estimate value, all region background types calculate an estimate for the LOD. For all regions with
background types other than “Limit of Detection” the LOD estimate is one standard deviation and
can only be seen if configured using the Standard Report. The application of a factor as shown in the

LOD test above must be introduced using a spreadsheet program based on the exported Standard
Report.

The Poisson distribution and Pulse Counted Data
For pulse counted data it can be assumed there exists a count rate v such that

1) The probability of a single counting event occurring in a small time interval of length 6t is
approximately equal to vét.

2) The probability of more than one counting event occurring in a small time interval 8t is
negligible when compared to a single counting event occurring in the same time interval.
3) The numbers of counting events in non-overlapping time intervals are independent.
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Given these assumptions it can be shown that the number of counting events occurring in a period

of time t has a Poisson distribution with parameter A = vt. If the random variable X (t) denotes the

vt r
number of counting events in the time interval t then P[X(t) = r] = % forr =0,1,2, ...

Given that Xis a Poisson distributed random variable; the expected value and variance for A = vt are
as follows

EX] =4
and
var[X] =2

Since for pulse counted XPS data A corresponds to the counts per bin, the standard deviation in the

counts per bin is ¢ = /var[X] = VA.

Provided an XPS spectrum can be expressed as counts per bin, assuming Poisson behaviour for the
noise in the data allows error estimates for peak fitting parameters to be calculated using a Monte
Carlo approach.

Monte Carlo Simulation

Real Data with Peak Model

ﬂ Fit Peak Model
Add Noise to to Synthetic Data
Synthetic Data  — [—— ) _
Y Synthetic Data with Noise

J

Collect Fitting
Parameters

Display Uncertainties in Analyse Parameter <::D
<—

Peak Parameters Distributions

A Monte Carlo procedure involves a simple sequence of steps aimed at estimating the precision
error in output quantities from a calculation. By synthesising the problem before adding noise back
to the synthetic problem followed by repeating the calculation, an understanding of how noise
perturbs the current set of peak parameters is established. After iterating through these steps
collecting the output parameters from each iteration, distributions for the output parameters are
gather where the variation in the output values are due to the influence of noise on the calculation
in question. For the problem of fitting peaks to data, the calculation is that of optimising a set of
peak parameters so as to reproduce the data envelope in a least squares sense.

Random Variables, Expectation and Variance in XPS
A random variable in statistics is a function defined in terms of events resulting in a numerical value.
For the purposes of XPS quantification, the numerical values might be the intensity of a peak as
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measured by a quantification region, and while the values for the, so called, random variable are

specific for a given set of conditions, the random element of the measurement process leads to
slightly different experimental conditions and therefore many possible values for the intensity for a
peak. That is, by repeating an experiment and recalculating the peak intensity different peak
intensities are obtained and these variations are due to random noise in the measurement process.
The analysis must therefore choose a value that best represents the peak intensity, which more
often than not is the value obtained from a single measurement. However, if a measurement is
performed multiple times, using the assumption the results obtained for each experiment is equally
likely, the value for the peak intensity is typically obtained by calculating the mean average for the
set of measurements. The mean average provides as estimate of the expected value for the random
variable corresponding to the counts per seconds for electrons allocated to a peak.

The term expected value for a random variable X with discrete values corresponding to a set of peak
intensity measurements {4, A, A3, -+, A, } with probability P[X = A;] is given by

px = EIX] = ) APIX = A]

i=1

The uncertainty for such a measurement is obtained from the square root of the variance for the
random variable as follows.

var[X] = Z(Ai — ux)?P[X = A;]
i=1

The standard deviation for the random variable from the expected value is
oy = +yvar[X]
and is a measure for the spread from the expected value in units of the expected value.

When a single measurement is used to estimate the intensity for a peak, the expected value is
approximated by the peak intensity integrated from the data envelope. An estimate for the
uncertainty is obtained by applying Monte Carlo methods to the intensity calculation. Each peak
used in XPS quantification represents a distinct random variable for which expectation and variance
are calculated. While in general random variables may potentially be dependent, random variables
measured from XPS quantification regions are assumed to be independent.

Intensity and Uncertainty for Multiple Peaks from a Single Transition

The intensity for a transition may be split between a pair of doublet peaks, such as is the case for Zn
2p, where a single integration region provides a poor definition of the background and therefore the
intensity of the transition is measured using two regions defined independently for these widely
separated Zn 2py/, and Zn 2p3, peaks.
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Provided the peak area is scaled using the combined RSF appropriate for adjusting the integrated
area from both peaks in the doublet, the total intensity is obtained by summing the intensity from
the two quantification regions. This statement is equivalent to the statement that the expected
value for the sum of two random variables X;and X,, £[X; + X,] is the sum of the individual
expected values

E[Xy + Xz] = E[X1] + E[X;]
The random variables X;and X, represent the peaks intensities for the Zn 2p;;, and Zn 2p3/, peaks.

When the uncertainty for these two peaks is calculated based on two quantification regions, the
uncertainty for the summed peak intensity is obtained by considering the variance for each random
variable and the covariance between the random variables. The variance is the square of the
standard deviation therefore the standard deviation for the summed peak intensity is obtained using

var[X; + X;| = var[X,] + var[X,] + 2cov[Xy, X;]

For independent random variables corresponding to region areas corrected for transmission, escape
depth and relative sensitivity, cov[X,, X,| = 0 therefore

var[X, + X,| = var[X,] + var[X,]

’ 2
— 2
= O-X1+X2 - le + O-XZ
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Zn 2p3; Zn2py), Zn 2p

Corrected Area 37932.6 18051.9 55984.5
St.Dev. 76.1778 120.328 142.4145

E[X; + X;] = 37932.6 + 18051.9 = 55984.5

Oy, +x, = |Ox,2 + 0x,> = /7617782 + 120.3282 = 142.4145

Note: intensities measured from peak fitting typically are not independent, therefore cov|[X;, X, ] #
0 for overlapping peaks.

Calculating the Ratio of Peak Intensities and Uncertainties

Consider, by way of example, the ratio of sulphur to zinc measured from the following survey
spectrum. The regions selected for the ratio are not the most intense peaks from either sulphur or
zinc, however the peaks are close in energy and therefore both the transmission and sampling depth
for these transitions are well matched. The low intensity for these peaks is also useful to illustrate
the uncertainty associated with calculating the ratio for these elements from XPS data.
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In general, the variance for a quotient of two random variables X and Y with expected values uy and
Uy, and variances var[X] and var[Y] is approximated by

X ux\? (var[X] wvar[Y] 2cov[X,Y]
w2 (02
Y Hy Hx Hy HxHy
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Since the random variables corresponding to the peak intensities measured from distinct energy
intervals are independent measurements, cov[X, Y] = 0 therefore for peak intensities measured

using regions

o] (2

The uncertainty in the ratio of two peak intensities measured from regions is obtained from

where A; and g, are RSF, transmission and escape depth corrected intensity and uncertainty
guantities. In CasaXPS these are calculated using a Monte Carlo procedure assuming the counts per
bin obey Poisson behaviour.

Thus, using the Custom Report on the Report Spec property page of the Quantification Parameters
dialog window, the relevant information can be gathered as follows.

1. Select the VAMAS block containing the survey spectrum in the right-hand pane of the
experiment frame.

2. On the Regions property page, press the Calculate Error bars button. This will ensure the St
Dev for the peak areas are available to the Custom Report.

3. Use the StDev button on the Custom Report to create entries suitable for calculating the
ratio and the uncertainty in the ratio using a spreadsheet program. Alternatively create a
Custom Report configuration file in the CasaXPS/CasaXPS.CQL directory already to generate
the ratio and the uncertainty for the ratio. Load the file using the Formula column header
button.
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4. Press the Area Report button on the Custom Report to generate the ratio together with the
uncertainty in the ratio.
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Uncertainty in Percentage Area

The problem of determining the uncertainty in atomic concentration measured using quantification
regions provides an insight into the problems involved when area measurements are made using
overlapping peaks. Atomic concentration for an element measured from regions is obtained by a
ratio of two quantities, namely, the intensity of the element and the total intensity summed over all
regions corresponding to each element used in the measurement. The concentration measured from

region i out of a set of n quantification regions is given by
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B, = 100 X —
[ ;l=1A]

Since the measurement for each peak intensity 4; is influenced by noise, the uncertainty in B; must
be determined by considering two random variables X; and Y corresponding to the possible
outcomes for the values A4; and Z}‘zl A;, respectively. While the intensities measured from
quantification regions are assumed to be independent, the random variables as stated X; and Y are
not independent since Z}‘zl Aj includes A;. To correctly combine error estimates for each of the A;
in order to obtain an error estimate for B; requires a determination based on the random variable
Z; = (Z}LIAJ-) — A;, where the functional form for the random variable W; corresponding to the

atomic concentration measurements B; is of the form

Xi

W, =——
X+ Z;

When expressed in this form, W; is defined in terms of two independent random variables X; and Z;.
Since for independent random variables X; and Z;.cov[X;, Z;] = 0, it is therefore possible to express
the standard deviation of W; in terms of the variance of X; and Z; only. This is in contrast to the
random variables X; and Y as, in general, cov[X;,Y] # 0 and so the var [%] cannot be expresses in

terms of var[X;] and var[Y] alone.
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The analogous problem, involving intensities measured using overlapping synthetic components
optimised to fit a data envelope, the percent area calculation yields numerous random variables
with varying degrees of dependency with one another. For data in which multiple overlapping peaks
are used to measured intensity that cannot be reduced to a set of independent random variables,
determining the uncertainty in the percentage area from the uncertainties in the peak areas is far
from trivial. Fortunately this problem is similar in nature to the initial problem of determining the
uncertainties in the peak fitting parameters. Monte Carlo simulation can be similarly applied to the
percentage area calculation; these Monte Carlo results are the uncertainties available for display via

12
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the Components annotation window and inclusion in quantification reports on the Report Spec

property page of the Quantification Parameters dialog windows.

Uncertainties are typically reported in terms of confidence intervals. For normally distributed
measurements about a mean, 68.3% of the values lie within one standard deviation of the mean.
Other than adopting the 68.3% criterion the availability of value distributions from a Monte Carlo
simulation means standard formulae for variance and covariance are not required to establish the
confidence interval for a given value. It is sufficient to collect the set of parameter values from these
Monte Carlos distributions which lie within an error ellipsoid, the dimensions of which ensure 68.3%
of the points belong to this set. The dimensions of the ellipsoid provides the relationship between
the different distributions in terms of correlation, and the projection of the extreme value for each
parameter within the ellipsoid defines the ranges for which the assertion that the expected values
are precise with a probability of 0.683 is supported.

Quantification Regions and Statistical Independence

Noise and Quantification Regions

Peak intensity measured using quantification regions involve integrating the background-subtracted
counts per second with respect to energy yielding an area which is corrected for transition
probability and instrumental intensity variations. These corrected area values are used to calculate
the relative intensity for an element in a sample. Intensity adjustment is achieved using a scaling
factor computed from the relative sensitivity of the transition, the transmission function for the
instrument response, and a correction for escape depth dependency on kinetic energy of the
recorded electrons.

Na 1s/3

x 10

L) L) l
1068
Binding Energy (eV)

The reported intensity of a peak is an estimate, and as an estimate requires additional information
to convey the level of confidence which can be placed in the intensity. Noise associated with the
measured data influences the value computed for the peak intensity and is the source for precision
errors in peak intensity. However, predominantly noise feeds into the measured intensity through
the background calculation particularly where a background depends heavily on the intensity of data
at the limits of the energy interval over which the background is defined.
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The level of confidence is not simply a characteristic of the signal-to-noise in the data, but is also

influenced by the statistic calculated from the data. The following two statistics measured from the
same data illustrates this point.

By way of example, consider a Li,SO, sample where the lithium peak, representing a significant
proportion of the surface material, is nevertheless small compared to the S and O peaks. The first
statistic measured from the data is the atomic concentration. Atomic concentration must be
calculated from scaled peak areas. The act of scaling the peak areas also scales the effect of noise
and the resulting percentage concentrations with 68.3% confidence intervals are displayed in the
table overlaying the spectrum below.
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A similarly calculated statistic, computed without any intensity scaling, offers a different table. By
omitting intensity scaling the uncertainty in the value computed for oxygen has dramatically
improved compared to the uncertainty for the atomic concentration calculation above.

x 10
353 Name  Pos  FWHM  Area AR %SDev O 1s
1 Lite 520000 24051 2291667 074 0.09
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25]
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A l Lils
T I T T T I T T T I T T T T T T T T T
1000 800 600 400 200 0

These two calculations provide an example of how an error associated with the measurement of a
small peak, in this case Li, is transformed into a large error in what would otherwise appear to be a
precise measurement, namely O 1s, as a consequence of simply applying relative sensitivity
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correction to the peak intensities. The lesson to be learnt from these calculations is it is worth

investing the time to improve the signal-to-noise in the lithium peak, which will be the limiting factor
in determining the atomic concentration for the sample in question.

Ideally, data should be acquired to achieve a consistent signal-to-noise for each peak used to assess
the composition of a sample. A typical measurement aimed at quantifying the surface composition is
performed using a survey spectrum where a fixed step-size and acquisition time is used to measure
all peaks within a wide energy range. The signal-to-noise ratio varies depending on factors such as
the background and the relative sensitivity of the peaks used in the quantification, so peak area
measurements from a single survey spectrum tend to vary in precision. Narrow scan spectra with
differing dwell-time are a means of focusing acquisition time on peaks such as the Li 1s peak for
which an improved quantification would result from increasing the dwell-time compared to the O 1s
data.

Calculating Uncertainty for Peak Intensity measured from Regions

The method used to calculate uncertainties for peak intensity measured using a quantification
region assumes noise in the spectral data obeys a Poisson distribution. A random number generator
is used to add noise to the data consistent with a noise distribution having a mean and variance
equal to the counts per bin. A data envelope is synthesised from the raw spectrum to which
simulated noise is added before calculating the peak intensity from the synthetic data. The intention
is to simulate an identical experiment to the one yielding the original spectrum.

To illustrate the consequences of simulating a fresh measurement an example using a linear
background type highlights how changes to the calculated background occur and therefore alter
peak intensity measured from differing but essentially identical data. Note how the intensity at the
end points used to define the background change as a result of noise.
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: 260
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Repeating the simulation step and collecting the set of peak intensities calculated from these data

provides a distribution of possible values from which a sample variance can be calculated.

Two methods can be used to measure the standard deviation from the simulated distribution
containing n simulations:

o . . 1 -
1. The standard deviation is calculated using the sample variance S? = — YT (4; — A)?
n-1
2. Alternatively the interval is computed to ensure number of distribution points closest to the

mean for the distribution, 4 = %Z?:lfli, includes 68.3% of the distribution points.

The error estimates based on both methods are reported above the distribution plotted below for
the variation in peak area of a nitrogen 1s spectrum.

N 1s/5 Area StDev: 313.718, 68.3%: 291.831 : N 1s
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Estimating the uncertainty for a peak based on a region assumes the peak intensity is independent
of any other measurements similarly made using quantification regions. While the assumption of
independence is generally acceptable for peak intensity measured from regions, there are
circumstances in which the assumption is not strictly true.

-1 = - Correlated peak intensities due to the

14 juxtaposition of quantification regions.
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If two quantification regions are defined for K 2p and C 1s transitions, firstly locating the regions one

directly next to the other, then secondly adjusting the regions to ensure a significant separation
between the two regions, plotting the deviation from the mean peak intensities for these two cases
illustrates potential correlation caused by quantification regions. The reason a dependency between
the two regions is introduced in the former case, where the regions connect, is the common end and
start limit for the K 2p and C 1s regions allows the same noise to influence both backgrounds
beneath the K 2p and C 1s data. The dependency is due to the common data channels used in the
calculation. Preventing the regions from using the same data to calculate the backgrounds removes
the dependency between the two peak intensities.

1 = Uncorrelated peak intensities due to the

x102 . cpe .
14 distinct quantification regions.

o
o
X

10 K 2p: Area StDev

C1s

—TT T T T T T T T T T T
300 296 292 288 284 280
Binding Energy (eV)

If peak intensities become correlated, the uncertainty in derived statistics which assume
independence will potentially under estimate the uncertainty in these derived statistics. For
example, if the statistic desired is the sum of the K 2p and C 1s peak intensities, for the correlated
definition for the quantification regions the uncertainty in the summed intensity would require
knowledge of the variance for both peaks and the covariance calculated from both distributions. The
following table represent an error matrix calculated from the two distributions generated from the
peak intensities for the K 2p and C 1s quantification regions.

Error Matrix
1:Area:K2p 2:Area:C1s
1:Area:K 2p 4816.71 1393.72
2:Area:C1s 1393.72 3005.49
To estimate the uncertainty in the statistic Area: K 2p + Area: C 1s the formula

var[X; + X;| = var[X,] + var[X,] + 2cov[Xy, X, ]

must be used where random variables X;and X, represent the peak intensity values. The
uncertainty in the summed peaks is therefore
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2
O-X1+Xz = Jaxlz + O-Xz + ZCOU[Xl,Xz]

= 0y, +x, = V4816.71 + 3005.49 + (2)(1393.72) = 103

An alternative method for calculating the same uncertainty is to introduce a third region spanning
both the K 2p and C 1s peaks with background type SKIP. A background type SKIP causes the
guantification region to use the background calculated by other regions defined on the data. The
peak area calculated from the third region is simply the sum of the two regions defined for K 2p and
C 1s data. Calculating the distribution generated by a Monte Carlo simulation for the region
measuring the sum of the K 2p and C 1s peaks yields an uncertainly of 102.98. If the covariance
between the K 2p and C 1s distributions is assumed to be zero, that is, these distributions are
assumed to be independent the uncertainty calculated by summing the variances alone would be
88.4, a value which underestimates the uncertainty in the summed intensity.

Provided quantification regions are defined to be independent, the uncertainty can correctly be
calculated by summing the variances. Performing the equivalent calculation as above but for regions
defined with distinct start and end limits, the outcome is as follows.

x10°

Error Matrix

14

& 1:Area:K2p 2:Area:C1s
12 1:Area: K 2p 4036.95 -85.4642
2:Area: C1s -85.4642 1863.94
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Again using a third region to span both K 2p and C 1s peaks from which an estimate for the
uncertainty in the sum of the two regions can be made yields a value for the uncertainty of 75.7.
Thus provided an element of care is used to ensure quantification regions are indeed independent of
one another, uncertainties in derived statistics such as ratios and atomic concentrations can be
calculated using only the variance obtained from distributions calculated by Monte Carlo simulation.

The example presented here where quantification regions are defined to be dependent is of greater
relevance to uncertainties in statistics derived from peak intensities measured using synthetic
component peaks in a peak model. If a common background is used beneath a set of apparently
independent peaks, including only the variance for the uncertainty in the peak parameters will
potentially underestimate the true uncertainty in derived statistics. For this reason it is necessary to
perform the analysis for peak parameter uncertainties in the context of joint distributions rather
than each distribution in isolation.
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Uncertainties Calculated from Peak Model Parameters

A simple problem of identifying peak intensity for a pair of C 1s transitions separated sufficiently to
expect a degree of independence for intensities illustrates the danger of assuming independent for
these types of measurements when considering uncertainties in atomic concentration calculations.

C 1s/6

X 1D1
{Residual STD = 1.04437

C 1s aliphatic: Are.

35 C 1s carbonate

C 1s aljphatic
i

Binding Energy (eV)

A scatter plot for the peak intensity measured using these two synthetic components reveals a
correlation between these two intensity values not dissimilar to the dependent regions above. The
background calculation which spans both peaks is the source for the connection between these two
peak intensities. Any statistic calculated from these two intensity values would require a non-trivial
uncertainty calculation before a confidence interval could be established for the statistic.

If two error distributions exhibit independence, the probability for a quantity lying within one
standard deviation of the mean is presumed to be 0.683. The measured quantity and corresponding
uncertainty cares little for other independent measurements. When two or more quantities change
depending on the values measured within the set of quantities of interest the problem changes as
follows. The set of acceptable parameter sets changes from simply deviation from the mean in each
distribution to considering the deviation from a centre of mass for the joint distributions. For a point
within the joint distribution to be accepted as a valid set of parameters, all parameters representing
the point must lie within a volume of space containing 68.3 % of the joint distribution. Since this
criterion for an acceptable parameter set is more exacting than the one used for independent
parameters, some values which would have been accepted as within the 68.3 % limit for a
parameter taken in isolation will be rejected by the collective perspective requiring all parameters
are within the defined limit, and therefore uncertainties in the individual parameters increase when
dependences are involved.

When dealing with multiple parameter distributions the term “lie within a volume of space” is
somewhat imprecise. Precision is given to this statement by choosing the region of space bounded
by an ellipsoid taking on the proportions defined by the variation in the distribution of parameter
sets about the centre of mass. These dimensions for the ellipsoid are obtained from the principal
axes calculated for the distributions. In using this criterion to partition the set of parameter sets into

19



P\

|CasaXPS
— Copyright © 2011 Casa Software Ltd. www.casaxps.com
those lying within a volume containing 68.3 % of the parameter sets and those outside the volume

as prescribed, a definition for the confidence region is made specific.

An example based upon an O 1s data envelope fitted with three component peaks provides an
illustration for the concept of an ellipsoid region of interest. The parameters calculated from the
three component peaks when fitted to the O 1s data are analysed via Monte Carlo methods to
produce the 3D distribution for the errors in the area parameters. The concept of an error ellipsoid is
used in CasaXPS to provide the measure of how close a particular set of fitting parameters are to the
distribution centroid. Parameter sets closest to the centroid, in an elliptical sense, such that 68.3 %
of the parameter sets are bounded by a common ellipsoid are marked with a cross.

0O 1sc: Area O1sc: Area

m\
\

O1sa: Aye

é/

O 1s/4
x 10°
{Residual STD=0.966742 ___ _ R S
25 Tt = = o
1 Name Pos. Area  %Area%StDev
2'3_: O1sa 531.7142 2958494 6351 156 O1sa

1 O1sb 533.2605 1090696 2340 152
n.’|5_: O1sc 5357817 610705 13.09 1.10

544 540 536 532 528
Binding Energy (eV)

Once a list of parameter sets are ordered according to proximity to the centre of mass, an
uncertainty for each parameter is obtained by determining the extreme points from the list
containing 68.3% of the distribution points. The method for determining the range of possible
acceptable outcomes is therefore analogous to method 2) above for calculating the standard
deviation from a single Monte Carlo distribution obtained for a quantification region.

Confidence intervals are offered to indicate how precise a value is computed from the data given a
peak model. The uncertainty estimate is exactly as stated, an estimate, with the merit of indicating
when a parameter value cannot be relied upon. The values calculated by CasaXPS are only as good
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as the method used and the applicability of the definition for the confidence region to the

distribution data. Calculating the confidence intervals for the parameters from the Monte Carlo data
directly simply provides an error estimate for the fitting parameters which should be used to
compare uncertainties obtained by one peak model against another. If a different method or
definition of the confidence region were adopted the values for the uncertainties would be different
from those reported by CasaXPS. It is therefore important to appreciate uncertainties are context
sensitive, where the context is both the method used to calculate the uncertainty from a set of
outcomes to an experiment and the criterion used to decide if a result is within the set of acceptable
values.

Also, as with all numerical methods, there are circumstances where any given method will fail. The
result of the Monte Carlo simulation provided in VAMAS format and the ability to plot these
distributions provides a means of assessing the uncertainty calculation itself. For example, a given
peak model may be unstable resulting in two very different outcomes depending on the noise in the
data. Plotting the distributions might show two or more clusters of parameter sets with distinct and
separate centres. Under these conditions assuming the centre of mass as being representative of the
distribution is possibly wrong and an ellipsoidal confidence region only has context for a distribution
with a single centre. Such an outcome for the error distributions is indicative of a poorly defined
peak model. Adjusting constraints will usually alter the result to one consistent with the uncertainty
calculation and often with the beneficial consequence of improving the stability and precision of the
peak model too.

Peak Fitting and Error Estimates

Quantification of a sample using XPS is typically presented as a set of atomic concentrations for the
elements evident in the data. Evidence of an element in the sample consists of a set of peaks in the
spectra and the ability to measure the contribution from each peak to an atomic concentration
calculation is dependent on separating peaks arising from different elements. The separation of
overlapping peak intensities is achieved by constructing a peak model from known lineshapes and
fitting these component peaks to the data envelope. The following data envelope is from a silicon
dioxide sample. The measured data envelope is a simple example of two component peaks.
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The usual objective for modelling a data envelope is to estimate the relative intensity of elements

using peak area. XPS often presents situations where peaks can be identified from the same element
with differing position and FWHM as well as from different elements with coincidently overlapping
peaks. When peaks overlap there are two problems involved in the calculation: the first, and
instrumental in the atomic concentration calculation, involves determining the peak area for each
peak underlying a peak structure; the second problem is to estimate the precision associated with
these area measurements. The subject addressed in this section is the latter, namely, assuming a
peak model is correctly defined, estimate the uncertainty in the peak area values determined from
the model.

Peak Parameters
Consider the case in which a component peak is defined by a Gaussian lineshape:
=

F

G(E) = Ae 1)

The functional form in Equation (1) contains three parameters P, A and F which alter the mean
position for the functional form, the area between the abscissa and the function, and the spread of
peak area over the energy axis, respectively. Given a data envelope which can be well approximated
by a single Gaussian as defined by Equation (1), the problem is to choose values for these
parameters P, A and F which minimise the chi square

2

n
X = z 4 s
i=1 t

where {d;,d,, :--, d,,} are the measured data intensities corresponding to energies {E;, E5, -+, E;,}

with individual standard deviations {oy, g5, **, 05, }.

There are many methods for minimising the y?2. Essentially these methods iteratively adjusting the
current parameter set P, A and F until the x? function appears to be at a minimum, and the
method chosen to minimise the x? is of no importance to the problem provided the method yields
a reliable minimum in a timely fashion.

Monte Carlo Simulation

The area for the Gaussian in Equation (1) can be calculated from the three fitting parameters once a
minimum is achieved. The uncertainty for the measured area may be estimated by taking a set of
identical samples, repeating the measurement several times and fitting the same model Gaussian to
these independent measures. Since the variable element in each determination of the peak area is
the noise contribution to the measured signal, the fitting parameters will only vary from the first set
determined due to the instrumental noise contribution in the data.

The principle behind Monte Carlo error estimation is analogous to the experimental method just
described. The only difference between repeating the experimental measurement and the Monte
Carlo approach is noise is introduced into the results from a single measurement using a random
number generator rather than allowing the noise inherent in the measurement process for a
sequence of measurements to alter the initial conditions to the fitting procedure. The output from
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both approaches is a list of fitting parameters differing from the original values only due to the

influence of noise.

The uncertainties for the adopted fitting parameters and therefore the peak area are calculated
from these variations in the parameter sets resulting from noise. One difference between an
empirical approach and Monte Carlo is the measurement process will necessarily introduce noise
characteristic of the instrument and sample while the Monte Carlo method requires a theoretical
specification of the noise.

For pulse counted data measured from a large sample of random events, in this case induced by
photoionisation, the noise distribution is modelled using a Poisson distribution where the standard
deviation in the recorded intensity in a data channel is the square root of the counts per bin. The
validity of assuming a Poisson noise distribution for the counts per bin is perhaps the weak link in
estimating the errors using Monte Carlo or any other theoretical methods reliant on knowledge of
the noise distribution. Problems with such an assumption exist for instruments for which data are
collected using multiple detectors or for detecting systems which are not strictly reporting raw
intensities. The consequence of multiple detector systems is the raw data appears smoothed by the
averaging procedures typically adopted when combining spectral information from multiple data
streams.

A simple procedure for testing the validity of assuming Poisson statistics for the spectral data bins is
to measure an energy range without any peaks in the data. Using the Regions property page, add a
region to the spectrum and select the regression background type for the region. A linear
background is added to the data chosen to minimise

ﬁ:ncﬁh@—%mﬂsz
i=1

g;

by calculating the linear parameters a and b over the interval defined by the region. The standard
deviation reported for the residual will be close to unity suggests the noise in the data channels obey
Poisson statistics.

The following data are from a multiple detector XPS instrument. The residual standard deviation is
too good and is the result of merging multiple data streams to produce the spectrum.
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Error estimates assuming Poisson distributed noise will be conservative for cases where the data

have a better than expected residual standard deviation.

Data collected using a single channeltron electron detector typically results in the expected Poisson

behaviour. The following data are collected with such a detection system which is typical of older

instruments. However, it is also possible that an instrument can introduce more than the expected

noise, in which case the uncertainties will be under estimated by the Monte Carlo approach.
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Estimating the Errors in Peak Parameters
For uncorrelated fitting parameters, one standard deviation in the distribution for the individual
fitting parameters offers the uncertainty interval with a 68.3% confidence. Unfortunately the only
time peak fitting is performed is precisely when the peaks are correlated and therefore the fitting

parameters such as those in Equation (1) are correlated too. Instead of considering the range of

variation for each individual parameter is becomes necessary to consider a multi-dimensional

distribution from which a region containing 68.3% of the parameter sets must be determined and

by projecting the extent of the region within which 68.3% of the possible parameter sets lie from

the mean, the uncertainty for each of the fitting parameters can be established.
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To illustrate the procedure consider
the case where two peaks are defined
which model a data envelope and for
which the peaks are assumed to have
fixed position and FWHM but the area
for each of the peaks is allowed to
vary. After performing a Monte Carlo
simulation for such a peak model, the
two free fitting parameters produce
two distributions from which the
uncertainties for the areas can be
estimated.
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A scatter plot of these two parameter distributions illustrates anti-correlation between these two
fitting parameters and also highlights the set of points belonging to the region which contains 68.3%
of the simulations outcomes. The scatter plot represents the outcome for the peak areas
determined for each optimisation step in the Monte Carlo procedure by positioning a marker at the
coordinate (areapeakl, areapeakz). These markers are filled with a colour determined by the size of
the coordinates relative to the mean for the individual distributions, where each coordinate axis is
assigned to a colour intensity red, green, blue (RGB) as a right-handed coordinate system. Markers
within the set of peak areas lying within an elliptical (in the case of a 2D plot) region containing
68.3% of these coordinates are additionally marked with a cross. An estimate for the uncertainty in
these two peak area parameters is obtained by projecting the extreme values from this 2D
confidence region onto the coordinate axes as illustrated below.

Index
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The principal axes determined from the parameter distribution are also shown. The length of these

axes are three standard deviations in the distributions obtained from the coordinates of the area
parameters after transformation to coordinates with respect to the principal coordinate axes.

While discussed in terms of two fitting parameters, the principles illustrated with 2D scatter
diagrams can be extended to m-dimensional problems involving m fitting parameters. The
visualisation of these m dimensional distributions is limited to a projection of these distributions
onto at most 3D scatter plots, but the mathematics for determining the confidence region in m-
dimensional space remains the same and can be used to obtain error estimates for fitting problems
requiring multiple component peaks with parameters equivalent to those illustrated by Equation (1).

Principal Axes and Peak Fitting Uncertainties

When peaks are fitted to data the answer returned by the fitting procedure for the peak areas is just
one of many possible answers. The source for these alternative outcomes to the fitting algorithm is
random variations in the data due to noise which differs with each measurement. The influence
noise on the outcome is dependent on the peak model used to approximate the data envelope and
the nature of the envelope in terms of underlying peak proximity.

The following data from a sample measured after bombardment with argon ions by XPS pulse
counted signal will be used to facilitate a discussion of the issues associated with estimating errors in
the parameters adjusted to fit the synthetic peaks to the data. An energy range appropriate for
electrons emitted from the Ar 2p core level provides an example of a doublet electron state yielding
two overlapping peaks. The discussion will focus on the determination of the peak areas for each of
the Ar 2py/, and Ar 2psz;, component peaks.

Ar 2p Doublet

[=1

x 10

| [
152 248 244 240 236
Binding Energy (eV)

A Monte Carlo procedure is used to simulate repeating the measurement many times and with each
simulated data set the peak area is recalculated. The result of the Monte Carlo simulation is a table
of variations from the initial peak parameters calculated from the Ar 2p spectrum. In this current
example of fitting two synthetic peaks the number of adjustable parameters is six, namely, two sets
of area, position and FWHM parameters, one set per synthetic peak. While these six parameters
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yield six error distributions, the discussion will proceed by focusing only on the two area

distributions in isolation. This is only to highlight the nature of the analysis involved in understanding
error distributions. The determination of the uncertainties for these area parameters in CasaXPS
includes all fitting parameters and not just the two distributions now discussed.

Methods for Characterising Trends in Scatter Plots

The peak areas, measured relative to the area parameter calculated from the data, are plotted for
the two peaks fitted to the Ar 2p spectrum as a set of points on Cartesian axes. Since the two peaks
overlap it is logical that if one peak increases in area, to fit the same data envelope, the second peak
must reduce in area. It is therefore reasonable to believe the scatter plot for these area parameters
is anti-correlated. A regression line calculated for the set of coordinates

)

<areasimulated peak, — Ar€Qpeqr, AVe€Asimulated peak, — areapealq)
areapeak, areapeqk,

supports this theory.

A Scatter Diagram in which the y-axis
is the area calculated for the Ar 2p;),

peak and the x-axis is the area for the
Ar 2ps/, peak. The peak areas are

-0.125 -0.075 0.075 0.125

plotted centred with respect to the
initial values for the areas determined
Yy = -1.001x + 7E-08

from fitting the model to the data and
normalised to these initial areas.

The trend in the above scatter diagram is

illustrated using a regression line. The
values; = y; — (a + bx;) are called the
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residuals and are depicted graphically as
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While a regression line is often used to determine the line of best fit, the error distribution is visually
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different in nature from the regression line. The regression line is limited to minimising the residuals
with respect to one distribution only. An alternative approach for lines passing through the origin is
to consider the shortest distance from each point on the scatter plot to a line of best fit. If the set of
points are considered to be the positions for a set of unit mass particles relative to the centre of
mass located at the origin, then the problem of calculating the lines of best fit for these two
distributions is equivalent to finding the principal axes for the moment of inertia for a collection of
particles.

-0.125 -0.075 _, == -0.0257 » (0h 0.075 0.125

g :i 2 Ny=-1.001x + 7E-08

-0.125

Consider a set of particles of unit mass with
position vectors r; = x;i + y;j and aline L
making an angle 8 with the positive x direction.
Let the shortest distance between the point with
position vector r; and the line L be p;.

A line of best fit through the origin may be
obtained by calculating the minimum for
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Let the unit vector in the direction of the line L be [ = ai + fj the p; = |r;| sinw = |rL- X l|

i j ok
rixl=|x; y; O0f=k(xp—ya)
a [ O
Therefore p;2 = (x;f — y;a)? and so
n n
1= Zpiz = Z(Xiﬁ - y;a)?
i=1 i=1
n
=1= Z(Xizﬁz - 2x;yaf + yta?)
i=1
n n n
== ﬁZinz + aZZyl-z — Zaﬁle-yi
i=1 i=1 i=1

Let

n n n
A= inz,B = Zyiz and C =inyl-
i=1 i=1 i=1

= I = AB? + Ba? — 2Caf

Since I = ai + Bj can be expressed in terms of the angle 6 between the line L and the x-axis, the
expression for I can also be expressed in terms of the angle 8; the values A, B and C are all
calculated from the data and are therefore known.

a =cosfand f = sinf
Therefore
I = Asin?6 + B cos?8 — 2C sin 6 cos 6

The line of best fit can be obtained by minimising I with respect to 4.

dl
i A2sinf cos® — B2sin6 cos @ — 2C(cos? 8 — sin? §)

Since cos 20 =cos? 6 — sin? 0 and sin 20 = 2sinf cos b

dI
T = (A—B)sin26 — 2C cos 20

. . dI
The minimum in I occurs when 5= 0 therefore

(A—B)sin26 —2Ccos26 =0

2¢
(4-B)

tan 26 =
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Applying the result to the two distributions for the area parameters from the Ar 2p spectrum the

minimum for I occurs for (A = Y129 x;2 = 0.132165691, B = ¥/%%y,2 = 0.563587216 and
C =Yy, = —0.132312195

2(—0.132312195)
(0.132165691 — 0.563587216)

tan26 = = 260 =tan"10.613377809

0.550198098 T
=0 =—F + k- radians
2 2
Therefore two extrema occur for linesat & = 15.76° and 8 = 15.76° + 90° = 105.76° with respect
to the x-axis.

If the set of data points are transformed by rotation by —105.76° the image for the distributions
appears as follows.

0.125 +

0.075 +

-0.075 +

-0.125 —

An alternative means of finding the principal axes which generalises to multidimensional
distributions is to minimise the function I = Af? + Ba? — 2Caf subject to the constraints
a’+ B2 =1.

Applying the method of Lagrange multipliers to this constrained optimisation problem involves
minimising

Y(ap) =1(a,p) — Aa* +p*—1)

The extrema are obtained by the condition % =0and Z—: =0

:‘;—jzZBa—ZBC—ZAazOandg—‘;=2Aﬁ—2aC—2/1/?=0

Resulting in the simultaneous equations
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2Ba —2BC —21a =0
248 —2aC —228 =0

(B—Ma— BC=0
—aC+(A-DB=0

or in matrix notation

[(B—_C/D (A_—C/l)] [l =0

A non-trivial solution is only possible if these two lines are parallel which means mathematically A is
an eigenvalue of the matrix

z= [—Bc _C]

A

The eigenvalues and eigenvectors for Z are the principal axes shown on the scatter diagram.

A geometric interpretation, at least for the 2D problem, is the principal axes are the directions about
which the variation in the data points plotted in the plane are a minimum in one direction and a
maximum in the orthogonal direction. Principal axes are calculated for multi-dimensional
distributions by performing an eigenanalysis. The residual option on the toolbar of CasaXPS turns
these principal axes on and off when data are displayed as a scatter plot.
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Principal Component Analysis and Principal Axes

-

a

L Consider a set of particles of unit mass with
.:' position vectors ; = x;i + y;j and a line L
yicost .." making an angle 8 with the positive x direction.
5 i , The direction cosines for the line L are
K ry=xl+Yy . . S o
b'.'.. LELEL S SR L] al+ﬁ]:COSel+Sln61

A line of best fit through the origin may be
obtained by calculating the minimum for

0
o
v

] = Z(Xiﬁ +y;2)?
=1

subject to the constraint a? + 2 = 1

o
U
U
g
g
Q
g
»
Q
g
g
g
g
0

The analysis for I can be applied for ] resulting in the following optimisation problem.
Minimise ] = AB? + Ba? + 2Cap subject to the constraint a? + g2 =1

Where again

n n n
A =le-2,B =Zyl-2 andC=inyl-
i=1

i=1 i=1

So applying the method of Lagrange Multipliers leads to finding the eigenvectors and eigenvalues of

w—[B c] y.y x-y]

“lc al T lxy xx

X1 V1
Y2

x
where x = ;2 andy = |"."|. The matrix W is the covariance matrix associated with a Principal

xTL yn
Component determination. The eigenvalues for Wand Z are identical since both are calculated from
the same quadratic

B-DA-1)-C*>=0

The eigenvectors for W and Z are related by a reflection in the x axis. The principal axes can
therefore be obtained using either W or Z.

Line of Best Fit using Z

As an alternative to linear regression, in general, a line of best fit in the moment of inertia sense,
where the distance between a point and the line is measured using the shortest distance from the
point to the line, is obtained by calculating the gradient for the line of best fit passing through the
mean coordinate for the two data distributions, with gradient obtained from the principal axis vector
determined from the matrix Z.
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Applying the notation used for linear regression, the mean centred distributions are summarised as

follows:
n n n
See= ) =B So =D (i=DOI=T) Sy =) Gi— IV
i=1 i=1 i=1

where

n
_ 1 d__l
x—ani andy = —
i=1

n
2)&
i=1

The equation of best fit y = a + bx is given by

(Syy - Sxx) + \/(Syy - Sxx)z + 4(Sxy)2

ZSxy
and
a=y—bx
Scatter Plot
1.15 T
\
L}
‘I
1.1
. r
* W8 b
(2] . 1".\
] .
g 1.05 -
L ﬁn"
- -t
-] Pl ¥ .
3 - 259
T -% P
2 ot 3
_ru * 0' - ..
E oos A% 2y
] *w] g%
= w1 [ .
-
0.9 r—
t \
\
\
0.85 A
0.85 0.9 0.95 1 1.05 1.1 1.15
Normalised Peak Areal

For the scatter plot of the peak area for each of the two Ar 2p peaks relative to the initial values for
the peak areas in the Monte Carlo simulation, the two possible lines of best fit have gradient —1 in
the case of linear regression, while the line of best fit based on principal axis has gradient —3.54.

Both lines pass through the mean coordinate for the data (k,y) = (1,1).
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