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Practical Guide to Understanding Goodness-of-Fit Metrics used in 

Chemical State Modelling of X-ray Photoelectron Spectroscopy Data 

by Synthetic Line Shapes  

Abstract 
Chemical state analysis by means of fitting bell-shaped curves to polymer data is reviewed and 

placed into context of the X-ray Photoelectron Spectroscopy technique in general. A specific 

example of Nylon is selected as the vehicle by which aspects of data analysis are introduced and 

discussed. Different strategies for modelling chemistry in Nylon spectra are presented and in so 

doing, a case is made to include in published science the design logic and implementation in terms of 

line shapes and optimisation parameter constraints between components in a peak model. 

Imperfections in line shapes relative to the true shape for photoemission lines as measured, when 

compensated for by means of constraints to optimisation parameters, are shown to provide 

chemical state information about a sample and that, for peak models constructed with these 

limitations, metrics for goodness-of-fit different from that expected for pulse counted data can be 

justified. 

Introduction 
An assumption that uncertainties in XPS are described by Poisson distributed noise is equivalent to 

an assumption that an XPS measurement has been performed under strict and ideal conditions. In 

practice, XPS is performed under less-than-ideal conditions and therefore goodness-of-fit metrics, 

that support the use of a particular peak model in understanding the chemistry of a sample, often 

return a suboptimal fit to data. Nonetheless, a suboptimal fit for a peak model to data may still 

provide a valid interpretation of chemistry. Therefore, the problem for an analyst is to decide 

whether or not a suboptimal fit implies a valid peak model has been used to fit data. In this paper 

the relationship is examined between X-ray Photoelectron Spectroscopy (XPS) data, the assumption 

that XPS is performed under a pulse counting regime and the conditions under which XPS data 

conforms to a statistical model for pulse counted data. 

The objective for this paper is to present a peak model that describes adequately the chemistry of 

Nylon while falling short of achieving goodness-of-fit metrics expected for pulse counted data. The 

construction of the peak model and how such a peak model is justified is central to the thesis of this 

paper. Therefore, the lines of thought that are used during the analysis of spectral data by means of 

fitting bell-shaped curves to XPS data is presented in great detail.  In so doing, the expectation is a 

reader may make a judgement for themselves as to the validity of the assertion that, a peak model 

when fitted to data with goodness-of-fit metrics less-than-optimal, is capable of returning valuable 

information about a sample. The detail provided is intended to emphasise that the conclusions 

drawn from a peak model are only valid if the assumptions used in constructing the peak model are 

valid.  

XPS data available in the Beamson and Briggs, XPS of Polymer Database, include many examples of C 

1s photoemission spectra, where electrons in an atom, on scattering by photons of a precise energy, 
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create data envelopes with shapes open to analysis by fitting bell-shaped curves to data. The use of 

bell-shaped curves in the analysis of spectra is appropriate for materials where there is a one-to-one 

correspondence between the energy of each bell-shaped curve and the chemistry for the atom from 

which the photoelectrons are emitted. The caveat to this paradigm for chemical state analysis is 

photoemission peaks in spectra do not always appear in isolation from photoemission signal 

corresponding to different chemical states of atoms. Many chemical states involving carbon, oxygen 

and nitrogen (in particular) contribute to photoemission signal from carbon that overlap in energy. 

When presented with complex spectral shapes, the solution for polymers is to construct a peak 

model using sets of bell-shaped curves and through the use of nonlinear optimisation, separate 

signal into units that can be assigned to chemical state. While spectra in the Beamson and Briggs 

database range from simple spectra with isolated photoelectron peaks to complex spectra for which 

ensembles of peaks from numerous chemical states are required, a discussion aimed at general 

principles used in fitting curves to data is perhaps best performed using a specific case study. 

Therefore, an example of such a polymer for which spectra exhibit enough complexity to warrant 

the use of modelling by bell-shaped curves and yet still simple enough to be open to chemical 

interpretation with ease, is Nylon and C 1s spectra from Nylon. The following, therefore, makes use 

of experiments performed on Nylon samples to explain aspects of XPS measurement and how 

analysis of XPS data is performed using peak models and nonlinear optimisation. 

Methods 

Fitting Statistics for Pulse Counted Data 
Most modern instruments measure signal by means of event counting. An electron of a given energy 

arrives at the detection system and, if detected, is recorded by adding one count to a given data bin 

within a spectrum.  An electron arriving at the detector must enter an electron-multiplier (channel 

plates) that creates a cascade of electrons which triggers a response in electronic circuits. If the 

pulse of electrons from the electron-multiplier is above a given threshold, the electron is detected. 

Detectors as described may add spurious counts due to any physical event (not due to the arrival of 

an electron at the detector) that triggers a cascade of electrons within the electron-multiplier. These 

spurious counts are referred to as detector background-noise. There are also situations where a 

detector fails to record electrons. If the number of electrons arriving at the detector means that the 

time interval between successive electrons is smaller than the time required by the electron-

multiplier and electronics to recover from the first electron, then the second electron is not 

recorded. The time interval required for a detector to reset in preparation for recording an electron 

is referred to as detector dead-time. However, provided an instrument is performing correctly and 

the operating mode, used to transfer electrons from the sample to the detector limits the number of 

electrons available for detection, then spectra acquired under these conditions are described as 

pulse counted electrons. Uncertainty in the number of electrons recorded by pulse-counting 

electrons is described statistically as being modelled by a Poisson distribution. The importance of 

recognising the validity of this assertion is that statisticians can justify the statement that given the 

number of counts per data-bin, the uncertainty in the number of counts per data-bin is proportional 

to the square root of the counts in that data-bin. Understanding the uncertainty in the counts per 

data-bin then allows a target value for a figure-of-merit, in the form of Equation (1) used during 

optimisation, to indicate the fit of a curve to data is optimal, in a mathematical sense. 
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𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑆𝑡𝐷𝑒𝑣 = √1

𝑛
∑ (

𝑑𝑖−𝑒𝑖

√𝑑𝑖
)

2
𝑛
𝑖=1        (1). 

If a curve fits data such that the residual standard deviation is unity, then for pulse counted data the 

solution is optimal. The reason the target of unity is appropriate for pulse counted data is the 

operand in the summation in Equation (1) measures the distance between the curve 𝑒𝑖 and the data 

𝑑𝑖  divided by the statistically predicted distance between these two quantities. For pulse counted 

data, the difference between the curve 𝑒𝑖 and the signal in a data bin 𝑑𝑖  is predicted to be √𝑑𝑖. If 

this expectation for the difference between the curve and data is met, then the operand will, on 

average, yield unity.  Hence, for an ideal fit of a curve to pulse counted data, Equation (1) is the sum 

of n terms each of which is equal to unity. Therefore, the residual standard deviation (Equation (1)) 

will return a value of unity. 

To make use of Equation (1) for XPS data it is necessary to demonstrate that XPS data meet the 

conditions required to model variations in data using Poisson statistics. The following three 

assertions must be true for XPS data to allow the use of Poisson statistics. 

Given the characteristics of XPS spectra described above, it can be assumed there exists a count rate 

𝜈 such that 

1) The probability of a single counting event occurring in a small-time interval of length 𝛿𝑡 is 

approximately equal to 𝜈𝛿𝑡. 

2) The probability of more than one counting event occurring in a small-time interval 𝛿𝑡 is 

negligible when compared to a single counting event occurring in the same time interval. 

3) The numbers of counting events in non-overlapping time intervals are independent. 

Given these assumptions it can be shown that the number of counting events occurring in a period 

of time 𝑡 has a Poisson distribution with parameter 𝜆 = 𝜈𝑡. If the random variable 𝑋(𝑡) denotes the 

number of counting events in the time interval 𝑡 then 𝑃[𝑋(𝑡) = 𝑟] =
𝑒−𝜈𝑡(𝜈𝑡)𝑟

𝑟!
 for 𝑟 = 0,1,2, … 

Given that 𝑋 is a Poisson distributed random variable, then the expected value and variance for 𝜆 =

𝜈𝑡 are as follows 

ℰ[𝑋] = 𝜆 

and 

𝑣𝑎𝑟[𝑋] = 𝜆 

Since for pulse counted XPS data 𝜆 corresponds to the counts per bin, the standard deviation in the 

counts per bin is 𝜎 = √𝑣𝑎𝑟[𝑋] = √𝜆. 

While these three conditions appear abstract, each can be placed into the context of XPS. The first 

condition requires that the number of electrons counted is proportional to the count-rate and 

duration-of-time counting is performed. This statement is fundamental to the statement that XPS is 

a quantifiable technique. Therefore, the first condition must be true for our use of XPS to be valid. 

The second condition, placed in the context of XPS, asserts that electrons are recorded at a 
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frequency that prevents detector saturation. Again, quantification by XPS depends on the use of an 

instrument for a given sample that prevents saturation of detectors. Dead-time correction is 

sometimes offered that estimates counts for high count-rates, but for reliable quantification by XPS 

it is arguably better to use count-rates for which dead-time correction is unnecessary. The final 

condition is a further requirement for the use of XPS, namely, we assume that measuring C 1s, for 

example, then O 1s at a different time result in counts for each that is independent of when these 

two measurements are performed. Thus, a basic use of XPS to measure sample chemistry and 

composition assumes the conditions for modelling variations in pulse counted data by a Poisson 

distribution are satisfied. 

Justification for the use of XPS as a quantifiable technique might therefore be seen in terms of fitting 

curves to data with fitting statistics compatible with Poisson statistics. Put another way, fitting 

curves to data without returning the behaviour expected for pulse counted data might be seen as 

evidence an XPS instrument is not performing in an operational-mode that would permit 

quantification. There are however reasons why fitting statistics can deviate from that expected for 

pulse counted data without implying problems for quantification of XPS data. Two examples are now 

presented which demonstrate Poisson statistics apply to these XPS data.  

Two spectra (Figure 1 and Figure 2a) are used to illustrate Poisson-like behaviour of XPS data. In both 

examples an estimate for signal is obtained by selecting energy intervals over which no 

photoemission resonance peaks are present. These energy intervals are used to fit linear 

polynomials independently to data in each energy interval. Variations in signal relative to these 

linear approximations are used to examine fitting statistics for XPS data. 

An example for data where the noise is Poisson distributed is illustrated in Figure 1. Data shown in 

Figure 1 are acquired by summing all electron induced events over a 2D delay line detector, one 

energy-data-bin at a time. Count rates are far below rates that would cause dead-time issues, hence 

these data in Figure 1 are a good approximation to true pulse-counted-data. By way of contrast, 

Figure 2 is an example of data measured using 0.3 s per data-bin and a delay-line-detector 

operating-mode that collects-in-parallel, multiple distinct data-streams. These data streams 

represent complete spectra offset in energy, which are merged to create the spectrum shown in 

Figure 2a. Figure 2b is the energy interval from the data in Figure 2a fitted with a linear polynomial. 

The residual plot in Figure 2b is analysed in terms of intensity of variation with respect to the linear 

approximation. The frequency of data-bins with respect to intensity of variation is displayed as a 

histogram in Figure 2c. The distribution shape in Figure 2c is consistent with a normal distribution, 

which is known to be an approximation to a Poisson distribution. Therefore, empirically it is possible 

to show that XPS data, under the correct circumstances, have noise characteristics for which 

Equation (1) returns values close to unity. 
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Figure 1. Pulse counted Si oxide spectrum recorded using a single detector. The two regions marked 

independently calculate linear polynomials that fit the signal in a least squares sense. The value 

calculated for the residual STD is unity because electrons were counted using a delay line detector 

operating as a single detector. Hence, true pulse counting is approximated by these data. 
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(b)       (c) 

Figure 2. (a) Spectrum recorded using multiple data streams. The energy interval marked is used to 

create the results shown in (a) and (b). Note that the residual STD value 0.79 calculated by fitting a 

linear polynomial to the inelastic background is less than unity. Merging multiple data streams to 

form a single spectrum has consequences for noise characteristics in data. The processing of signal 

from multiple data streams effectively smooth noise in the computed spectrum. (b) Signal measured 

during an XPS experiment for a section of inelastic background signal without photoemission 

resonance peaks. (c) Is a histogram of frequency for deviations in counts per bin from a linear 

polynomial that fits data in a least squares sense. The fit to data for the computed linear polynomial 

in (b) creates a residual trace with the distribution of intensity relative to the linear polynomial 

shown in (b).  

Components and Peak Models 
A peak model is a set of curves that when summed together creates a single curve which when 

correctly adjusted approximates shapes within spectra. The basic unit used to define a peak model is 

a component to the peak model, which is a parametric curve that defines the characteristic shape of 

photoemission data (line-shape) and adjustable parameters used during optimisation. The function 

of the curve defined for a component is to mathematically model photoemission signal (peak or 

background signal) using shapes based on physics. Adjustable parameters are designed to both allow 

optimisation to fit the peak-model-curve to data and to allow physical properties to be assigned to a 

component, such as binding energy or photoemission intensity. 

Components and Chemical State 
XPS creates spectra by irradiating a sample with photons of a given energy causing the emission of 

electrons. Electrons emitted from the sample are detected over a range of energies which take two 

forms, namely, electrons that escape the sample without losing energy and electrons that 

experience inelastic scattering and therefore emerge with energy different from the initial energy 

due to photo-ionisation. Photoemission due to scattering of bound state electrons by photons of a 
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specific energy are recorded to form an energy spectrum with shapes characteristic of chemical 

state. Emission signal from quantized bound states is detected at energies depending on the binding 

energy of core level electrons scattered by photons and concentrate signal over a narrow energy 

interval compared to broad structures typical of background signal. Spectra contain peak shapes that 

result from primary emission (photoelectron) due to scattering of core-level electrons and secondary 

emission in the form of Auger electrons. The latter have kinetic energy that are independent of 

photon energy, but primary emission results in electrons with kinetic energy that depends on both 

the core-level involved and the energy of the photon. The dependence of primary-photoemission 

kinetic-energy on photon-energy is the reason XPS spectra are presented as intensity plotted against 

binding energy. Binding energies from core level electron configurations tend to be emitted with 

significant differences in energy for different core levels, however the exact binding energy for a 

core level electron within an atom depends on the chemical bonds between the atom and other 

atoms in the sample. Thus, when C 1s for example is measured from a material known to be Nylon, 

rather than a single photoelectron peak, the spectrum for C 1s photoemission (Figure 3a) is the sum 

of several peaks each offset in energy due to carbon bonded to other carbon, hydrogen, nitrogen 

and oxygen (Figure 3b). One of the advantages of XPS as an analytical technique is it is possible to 

identify photoelectron peaks shown in Figure 3a with chemical interpretations for these peaks as 

illustrated in Figure 3b. Figure 3a demonstrates two features of XPS signal. Firstly, provided data are 

acquired with sufficient energy resolution, it is possible to see clearly different chemical states for 

carbon atoms in Nylon (illustrated for N-C=O chemistry compared to other chemistry for carbon in 

Nylon). Secondly, the only photoemission peak easily identified in Figure 3a is N-C=O. The other 

three chemical-states for carbon in Nylon (C-C-C, C-N and C-C=O) involve correlated signal and 

therefore, investigating chemical state for Nylon requires the use of a peak model. 

Bell-Shaped Components and XPS 
Examples of commonly used functional forms with the characteristics of bell-shaped curves are 

illustrated in Figure 3c. These three mathematically defined shapes all are plotted in Figure 3c, 

where the areas bounded by the curves and the x-axis for all three are identical and all are defined 

with the same full width and half maximum (FWHM). Bell-shaped curves used in XPS are often 

constructed from two easily defined mathematical functions, Equation (2) and Equation (3). The 

natural line shapes for photoemission are assumed to be close to the Lorentzian shape in Equation 

(2) illustrated in Figure 3c. However, observed line shapes tend to appear with characteristics that 

differ from a pure Lorentzian shape. To accommodate these shapes in observed line shapes a 

Gaussian (Equation (3)) is blended mathematically with a Lorentzian, such as performed through a 

convolution integral (Equation (5)). The convolutions in the form of Equation (5) reduces to a Voigt 

function for the case where α and β in Equation (4) are both set to unity. A Voigt function is 

symmetrical, however XPS data can involve asymmetric line shapes. Therefore, for the line shape in 

Equation (5) makes use of the generalised Lorentzian in Equation (4) to offer a means of introducing 

asymmetry into a line shape. Pseudo-Voigt line shapes often appear in the literature for historical 

and practical reasons. These pseudo-Voigt functions are defined in the form GL(m) or SGL(m), where 

the parameter m ranges over an interval [0,100], for example, such that m=0 corresponds to a pure 

Gaussian and m=100 corresponds to a pure Lorentzian. To mimic GL(m) and SGL(m) definitions in a 

Voigt function, the LA(m) line shape defined by Equation (6) fulfils this role, subject to the limitation 

of performing the convolution integral in Equation (5) by numerical means. The value 1401 used in 
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Equation (6) is an arbitrary number used to defined the upper limit to the width of a Gaussian used 

in Equation (5), hence LA(0) is not a pure Gaussian. 

𝐿𝑜𝑟𝑒𝑛𝑡𝑧𝑖𝑎𝑛: 𝑙(𝑥) =
1

1+4𝑥2        (2), 

𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛: 𝑔(𝑥) = 𝑒−4𝑙𝑛2𝑥2
        (3). 

Voigt line shapes are defined from Lorentzian and Gaussian functions via the special case of a 

generalized Lorentzian (Equation (4)) and the convolution integral in Equation (5)  

𝐺𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑠𝑒𝑑 𝐿𝑜𝑟𝑒𝑛𝑡𝑧𝑖𝑎𝑛: 𝑙𝑔(𝑥: 𝛼, 𝛽) = {
[(𝑙(𝑥)]𝛼 𝑥 ≤ 0

[𝑙(𝑥)]𝛽 𝑥 > 0
    (4) 

𝐿𝑖𝑛𝑒𝑠ℎ𝑎𝑝𝑒: 𝐿𝐴(𝑥: 𝛼, 𝛽, 𝑛) = 𝑁 ∫ 𝑙𝑔(𝜏: 𝛼, 𝛽)𝑔(𝑥 − 𝜏: 𝑓𝐺(𝑛))𝑑𝜏
∞

−∞
   (5). 

The symmetric line shape 𝐿𝐴(𝑥, 𝑚) specified by the string LA(m) is constructed from the definition 

for 𝐿𝐴(𝑥: 𝛼, 𝛽, 𝑛) and the maximum allowed value 𝑛 defining the width for the Gaussian term in the 

LA convolution integral in Equation (5) 

𝐿𝐴(𝑥, 𝑚) = 𝐿𝐴 (𝑥: 1,1, (1401 − (
𝑚

100
) 1401))       (6). 

The analysis of spectra by fitting curves to data is often seen as synonymous with fitting bell-shaped 

curves to data. In the case of Nylon there is a strong case for following this model of defining 

chemical state signal from C 1s photoemission by means of individual bell-shaped curves. However, 

there are many examples in XPS data where chemical state in an atom induces complex shapes that 

do not lend themselves to the paradigm of one bell-shaped curve for one chemical state. Metal 

oxides, for example often manifest as sequences of peak structures all coalesce to form a data 

envelope that characterise specific oxidation states of a metal. While one should be aware of the 

limitations of assuming one bell-shaped curve for one chemical state, an analysis of Nylon making 

use of a peak model constructed from four component curves (each representing a different 

chemical state of carbon) provides talking points of significance to anyone new to the use of peak 

models in XPS and optimisation that fits peak models to data. 

Background Curves 
The peak models presented in this paper make use of components that model background signal. 

The Shirley algorithm [cite paper] applied to a bell-shaped line shape provides a sigmoid response 

that can be positioned appropriately to account for the inelastic scattering of electrons for a material 

with a threshold limit for energy loss. 

For any synthetic line shape 𝐹(𝑥) a Shirley profile line shape is computed using the integral in 

Equation (7). The notation in Equation (7) is designed to allow the use of any line shape to be used to 

create a component with Shirley shape. For example, Equation (7) would apply equally well to 

pseudo-Voigt functions GL(m) and SGL(m) by creating sigmoid type curves defined by SB(0)GL(m) or 

SB(0)SGL(m). 

𝑆𝐵(0)𝐹(𝑥) = ∫ 𝐹(𝜑)𝑑𝜑
∞

𝑥
        (7). 
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The sigmoid shape defined by Equation (7) may be defined as a component to a peak model. Since a 

curve based on Equation (7) involves the integral of a parametric curve in the form of a bell-shaped 

curve, the energy for the sigmoid shaped component in a peak model is determined by the energy 

for the bell-shaped curve appearing in the integral. Thus, the sigmoid shape may appear at any 

energy determined by the optimization algorithm that fits the peak model to data. 

A sigmoid shape constructed from Equation (7) applied directly to data, where a basic linear 

background is first removed from data, similarly provides the basis for constructing a background for 

Nylon. The Shirley background shape initially computed can be offset in energy and therefore 

provides a linear background augmented with a Shirley sigmoid shape calculated from data that 

models a rise in background intensity in response to a photoemission peak at an energy different 

from the peak itself. 

An alternative approach to constructing a background curve shape is the use of a background 

described as a three-parameter universal cross-section Tougaard background defined by Equation 

(8) and Equation (9). The background 𝑇(𝐸) is computed from the measured spectrum 𝐽(𝐸), 

representing the photoelectron peak plus signal due to inelastic scattering of these photoelectrons 

by electrons within the sample, using the integral: 

𝑇(𝐸) = ∫ 𝐹(𝐸′∞

𝐸
− 𝐸)𝐽(𝐸′)𝑑𝐸′        (8). 

The integral is constructed making use of information in the form of the Tougaard Universal Cross-

Section that provides a means of modifying background signal in response to material properties of a 

sample. These material properties are input via cross-section parameters 𝐶, 𝐷 and 𝑇0 defined in 

Equation (9). 

𝐹(𝑥) = 𝑈(𝑥: 𝐵, 𝐶, 𝐷, 𝑇0) = {

𝐵𝑥

(𝐶−𝑥2)2+𝐷𝑥2 𝑥 > 𝑇0

0 𝑥 ≤  𝑇0

      (9) 

For as-measured spectra, the B parameter is used to scale the background curve with respect to 

intensity at some kinetic energy lower than the photoemission peak for which a background is 

required. The more powerful aspect of the Tougaard approach is the cross-section, which when 

available provides informed guidance for shapes within background signal. These parameters are not 

arbitrary and must be determined on physical grounds for specific materials. Tougaard published 

examples of backgrounds based on Equation (8) and Equation (9), one of which is a prescription for 

use with general polymer spectra. The Tougaard approach to computing background signal is 

designed to model extrinsic background shapes. That is, shapes in background signal that are a 

consequence of inelastic scattering of photoelectrons following excitation to the continuum states 

for the atom from which photo-ionisation occurs. Of particular interest for Nylon spectra is the 

parameter in Equation (9), namely, 𝑇0 which is intended to delay the onset of background signal with 

respect to a photoemission peak. Thus, the role of the 𝑇0 parameter is to model background shapes 

via Tougaard backgrounds constructed for insulating materials, which is similar to the logic of using a 

Shirley sigmoid-shape offset in energy from the photoemission peak in question. 

Introducing the Tougaard background is done to provide the context for modelling the background 

in Nylon by means of Shirley type backgrounds. Specifically, Tougaard backgrounds are design to 

account for inelastic background response to a photoemission peak for many electron Volts to lower 
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kinetic energy of the photoemission peak. The same is difficult to justify for backgrounds based on 

Shirley approximations. Use of a sigmoid shape derived from the Shirley algorithm is only plausible in 

the case of Nylon at the point background signal first responds to photoelectrons from a given Nylon 

core level. In the case of modelling C 1s spectra, the following section justifies the use of a sigmoid 

background approximation, which is used predominantly to allow for a specific Voigt line shape used 

for N-C=O photoemission. The interaction of background curves and line shapes used to model 

photoemission is never easy to scientifically justify, but the use of line shapes with greater 

Lorentzian character does require some accommodation in background curves and these aspects of 

XPS data analysis are the motivation to illustrate through Nylon how line shape selection makes a 

difference to background selection and ultimately the outcomes to physically meaningful 

parameters when fitting peak models to data. 

 

(a) 

 

 

(b)     (c) 

Figure 3. (a) C 1s spectrum measured from a sample described as Nylon. (b) Three possible 

chemistries for materials nominally described as Nylon. (c) Examples of bell-shaped curves suitable 

for modelling photoemission signal. 
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Discussion and Results 
Goodness-of-fit statistics are only meaningful if a peak model accurately represents the chemistry in 

a sample. It is relatively easy to create a peak model that fits data with fitting-statistics compatible 

for pulse-counted data. Simply by adding components to a peak model and performing optimisation 

without constraints will ultimately permit high quality data reproduction, but will fail to provide 

physically useful information about a sample. The case considered in this paper is where a peak 

model represents chemistry in Nylon, but when fitted to data, the fitting-statistics are suboptimal 

with respect to fitting-statistics for a perfect peak-model applied to true pulse-counted data. These 

peak models with suboptimal fitting-statistics still provide useful information about sample 

composition because of the logic used to construct these peak models. An explanation of the logic 

used to create peak models, based on sample knowledge, awareness of instrumental factors and 

awareness of data-analysis limitations/strengths, helps to allow others in accepting results from XPS 

when offered with suboptimal fitting-statistics. Hence, the following provides details for the process 

by which peak models are constructed and applied to data measured from Nylon samples. 

Survey Interpretation 
The most crucial step in modelling photoemission data is determining the number of component 

curves used to describe the chemistry of the sample. When presented with data such as that shown 

in Figure 3a and the statement that the sample is Nylon, the temptation is to settle on four chemical 

states for carbon atoms as shown in Figure 3b. However, even for a sample of known origin, it is 

advisable to measure a survey spectrum before attempting to understand a narrow scan spectrum in 

isolation. A survey spectrum offers information about two basic aspects of the sample. Firstly, a 

survey allows an investigation of what else might be within a sample that might influence shapes for 

signal within a narrow scan C 1s spectrum. Secondly, survey data are often measured using 

operating modes for an instrument that allow relative intensities for photoemission peaks to be 

interpreted as amount of substance. With respect to XPS, Nylon is nominally a bulk homogeneous 

sample. Accurate elemental quantification by XPS is only possible under special circumstances 

(homogeneous materials and well calibrated instrumentation), nevertheless, measuring 

photoemission peak intensities as a percentage of signal from different atoms (even for samples 

which do not conform to the cases for which XPS can be interpreted as amount-of-substance) 

provides information useful in constructing a peak model. That is, if the survey quantification results 

in unexpected proportions for elements in a sample, attempting to understand reasons for these 

results provide food-for-thought used in building a peak model. For example, an excess of carbon 

compared to nitrogen and oxygen in a material assumed to be Nylon requires explanation and might 

explain anomalous proportions for components in a peak model when fitted to C 1s data. The survey 

spectrum corresponding to the C 1s spectrum in Figure 3a is shown in Figure 4. A quantification table 

calculated from integration regions is displayed in Figure 4 which suggests there is an excess of 

carbon for Nylon 6 or Nylon 6,6 but insufficient carbon if the sample corresponds to Nylon 12 (Figure 

3b). Thus, quantification based on the survey spectrum implies a peak model for Nylon which is 

formed from four component peaks in proportions expected for Nylon (3:1:1:1), may not fit these 

data in Figure 3a with fitting-statistics of sufficient quality to have confidence in the results from the 

fit to data. 
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Quantification by XPS as shown in Figure 4 (and in general) is difficult to interpret owing to the 

surface sensitivity of the technique. That is, XPS signal after subtraction of inelastically scattered 

background derives from the top three attenuation-lengths of the sample. For Al anode X-ray 

sources, the volume of material sampled is less than 10 nm. Therefore, unless the sample is perfectly 

homogeneous the volume sampled does not represent the chemistry of the bulk material. A sample 

that might be considered homogeneous in the bulk may have surface contamination or differences 

in composition localised to the surface interface that biases quantification results. Hence, while the 

survey spectrum in Figure 4 implies an unexpected carbon contribution, due to uncertainties in 

quantification by XPS, these results should be seen as a guide rather than entirely accurate. The 

energy resolution of these survey data is insufficient to identify the nature of the excess carbon with 

respect to Nylon 6. Therefore, to make progress in understanding data in Figure 3a a peak model is 

required, but a peak model that does not precisely match the expectation for relative component 

area implied by Nylon, but also, not necessarily matching exactly the amount of excess carbon 

determined from survey data. 

 

Figure 4. Survey spectrum measured using pass energy 160 eV operating with lens mode FoV1. 

Scofield cross-sections are the source for RSFs which are corrected for escape depth. FoV1 is an 

imaging mode for the Kratos Axis Ultra XPS instrument and when tuned to create registered images 

of the sample of constant area the intensity response of FoV1 to changes in kinetic energy is 

relatively flat over a wide range of energies. Hence quantification based on Scofield cross-sections 

and escape depth correction without use of the Kratos transmission yields results for atomic 

concentration that are expected to be reasonably accurate. The table of atomic percentages 

computed from integration regions defined for C 1s, N 1s and O 1s photoemission suggests an excess 

of carbon compared to both nitrogen and oxygen. Background approximations for these regions are 

consistently applied to each photoemission peak using Tougaard universal cross-section parameters 

constructed for general polymer materials. 

Data Sets Designed for Evaluating Fitting Statistics  
Constructing a peak model based on one spectrum is always open to criticism. A spectrum in 

isolation may, in the worst-case scenario, contain artefacts from the measurement process which 
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may not be obvious by examining one spectrum. There is always the possibility a single spectrum 

when measured includes shapes unrepresentative of chemistry, simply because a measurement was 

compromised in some way by operational issues with an instrument. In particular, for insulating 

samples stability of charge compensation should be proved rather than assumed. Hence repetitions 

of measurements are an important first step to ensure spectral shapes are repeatable and results 

extracted from fitting peak models to data are reproducible. 

Ideally, an independent researcher should be able to reproduce results obtained through analysis of 

a material by similar measurements and similar data treatment. In practice different instruments 

and different operating modes may result in changes to the recorded shapes of photoemission peaks 

as well as background signal. Thus, a peak model may require modifications before application to 

spectra from a different source. Nevertheless, the objective in creating a peak model is to make use 

of background curves and bell-shaped curves that are robust in the sense the same peak model can 

be applied to similar data through justifiable minor adjustments to curves that represent shapes in 

signal. With this aim in mind, constructing a peak model is explained in this paper based on data 

measured using two different approaches.  These two different approaches to acquisition of data are 

now described. 

The spectrum in Figure 3a is acquired as part of an experiment in which O 1s, N 1s, C 1s and valence 

band data are acquired using the dwell-time per data bin equal to 200 ms, but where each spectrum 

is accumulated over 33 scans before moving in energy to the next spectral region. The second 

approach involves spectra measured using the same dwell-time of 200 ms per data bin, however in 

this experiment each spectrum for O 1s, N 1s, C 1s and valence band is recorded and saved 

separately for 33 cycles of measurements over these four spectral energy intervals. These two data 

sets therefore measure each spectral region with equal total-acquisition-time, however in one case 

the 33 separate C 1s spectra with lower signal-to-noise are available whereas in the other case one C 

1s spectrum with good signal to noise is the result. The motivation for measuring Nylon spectra by 

these two means is to monitor how fitting statistics obtained for a peak model change with dwell-

time per data-bin. Therefore, a peak model is designed to fit chemically meaningful shapes in Nylon 

spectra. Shapes in data that are not chemically meaning full should not alter the fit to data and are 

described as noise. Noise in XPS data is not limited to the statistical uncertainty in pulse counted 

data. Systematic noise is also a feature of measured data, that is not modelled by Poisson statistics. 

These measurements are designed to highlight systematic noise in spectra. When considering noise 

in spectra, the benefit to measuring data by these two means is that a peak model developed for C 

1s can be evaluated against data with different combinations of noise due to pulse counting and 

instrumental noise. The influence of these two types of uncertainty in spectra when fitting peak 

models to data is reflected in the figure-of-merit and residual plots achieved by optimisation.  

While 33 separate spectra measured with 200ms dwell-time might seem like a good solution to the 

problem of tracing the evolution in data due to systematic changes, this is not the full story. A 

spectrum acquired using one scan with 6.6 s dwell-time might induce different types of systematic 

variations in spectral intensities from a spectrum acquired using 33 scans acquired at 200ms dwell-

time. Nonetheless, the experiments as described are sufficient to establish that data measured using 

both methods yield data for which a peak model appears to fit low signal-to-noise data with fitting 
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statistics consistent with pulse counted data, while high signal-to-noise data exhibits suboptimal 

fitting statistics. 

Estimating Background Curves for Nylon 
Background signal is generally the result of electrons that are initially emitted from atoms with 

kinetic energy higher than the photoemission peak under analysis. However, changes to the shape of 

background signal beneath a photoemission peak are the result of inelastic scattering of 

photoelectrons from the peak in question. While a response in background signal to the 

photoemission peak is observed for certain materials (most notably metals), for Nylon an immediate 

response in the background to the photoemission peak does not occur. For inelastic scattering to 

occur electrons in states for which scattering is allowed by quantum mechanics must be available. 

One of the characteristics of insulator materials is that inelastic scattering of photoelectrons is offset 

in energy from the energy for the photoemission peak representing zero-loss energy signal. In 

practical terms, background signal beneath Nylon peaks follows the general trend in the background, 

which is readily approximated by a linear polynomial. However, in the case of C 1s emission from 

Nylon, chemically shifted photoemission from different bond states for carbon is spread over an 

interval in energy in which a Shirley response is possible. These energy offsets in the response of the 

background to a photoemission peak are material-dependent and therefore need assessing for 

Nylon photoemission. Chemical shifts for C 1s signal illustrated in Figure 3a make it difficult to see 

clearly the influence on background due to inelastic scattering of C 1s photoelectrons. However, in 

the case of Nylon, estimates for the characteristic energy-offset to background signal beneath a C 1s 

signal can be obtained by considering N 1s and O 1s spectra. Both N 1s and O 1s photoemission from 

Nylon are the result of single chemical environments for N and O with distinct binding energies for 

1s electrons. Therefore, photoemission for N 1s and O 1s yield one photoemission peak per element 

that are well resolved from any interfering emission. Figure 5a and Figure 5b presents an analysis for 

the background response to O 1s and N 1s photoemission, respectively. These photoemission peaks 

are sufficiently narrow and the background response to these photoemission peaks are offset in 

energy enough to allow an estimate to be established. Given the estimate in Figure 5a and Figure 5b 

for the energy offset for N 1s and O 1s (6.9 eV and 5.6 eV, respectively), a reasonable estimate can 

be made for a similar response in background signal to C 1s photoemission (Figure 5c). Specifically, 

the energy offset in background response for C 1s photoemission occurs to slightly higher binding 

energy than the component representing C 1s N-C=O emission. Thus, the set of four bell-shaped 

curves used to model C 1s chemical state in Figure 5c are arranged on a flat background, an 

assumption also supported by the relatively flat shape of background signal at lower binding energy 

to C 1s visible within survey data in Figure 4. 
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(a)       (b) 

 

(c) 

Figure 5 (a) O 1s photoemission measured from Nylon using dwell-time of 200 ms and 33 scans. A 

linear background is extrapolated from a fit of a linear polynomial to data with lower binding energy 

than the O 1s photoemission peak. A sigmoid curve computed from the O 1s O=C component is 

included in optimisation when the peak model is fitted to O 1s data. The difference in energy 

between the position for the sigmoid background component and the component representing O 1s 

photoemission with chemical state O=C is 5.6 eV. (b) N 1s photoemission measured from Nylon 

using dwell-time of 200 ms and 33 scans. A similar analysis to that performed on O 1s applied to N 1s 

demonstrates that the background response to N 1s photoemission is offset to higher binding 

energy by about 6.9 eV. In the case of N 1s, the background response is less well defined than O 1s 

resulting in a sigmoid component with a FWHM of 1.6 eV compared to the FWHM for the 

corresponding sigmoid component of 0.52 eV, hence there is greater uncertainty in the offset in 

energy computed for N 1s photoemission. 

Bell-Shaped Components in a Nylon Peak Model 
The peak model in Figure 5c is constructed assuming the chemistry for carbon shown in Figure 3b, 

namely, carbon appears in Nylon bonded to (1) carbon and hydrogen (C-C-C), (2) bonded to carbon 
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where carbon is perturbed in energy due to a bond to carbon that is also double bonded to oxygen 

(C-C=O), (3) nitrogen (C-N) and (4) double bonded to oxygen (N-C=O). Each peak in intensity from 

carbon atoms bonded to atoms as listed, is offset in energy, therefore four components to the Nylon 

peak model in Figure 5c are arranged with binding energy reflecting these chemical states of carbon 

and the components representing these chemical states have FWHM and intensity (measured by 

area CPSeV) that suggest relationships between carbon, oxygen and nitrogen from which the relative 

numbers for these atoms within the sample can be estimated. Before considering the information 

about the sample implied by the peak model in Figure 5c, justification for the peak model is 

explained below. 

Components for a Nylon Peak Model 

The primary motivation for selecting four components to the peak model in Figure 5c is the expected 

chemistry of Nylon as shown in Figure 3b. The caveat for the peak model in Figure 5c is that the 

intensity ratio for carbon in the four chemical states as shown does not agree with the idealised 

relationships illustrated in Figure 3b. The component corresponding to CH2 bonded to CH2 only (C-C-

C) with respect to other carbon atoms in differing chemical state, should be on average, either 3:1 

(Nylon 6 or Nylon 6,6) or 9:1 (Nylon 12). The same ratio determined based on the peak model in 

Figure 5c is 5:1. Quantification for this sample based on integration regions and survey data similarly 

suggest an excess of carbon for Nylon 6 or Nylon 6,6. Results from both the peak model in Figure 5c 

and the survey spectrum in Figure 4 agree that the amount of carbon atoms is unexpected for Nylon 

depicted in Figure 3b. However, assuming the peak model in Figure 5c is correct, then the peak 

model provides information about carbon not available from the survey data, namely, the excess 

carbon appears to be of the form CH2 bonded to CH2 only. Such an observation would indicate the 

sample includes a significant contamination with adventitious carbon or the termination of this 

particular form of Nylon, at the interface to the vacuum, favours collecting of signal from CH2 

bonded to CH2 only preferentially over the other three chemical states for carbon. If, for example, 

CH2 bonded to CH2 only is systematically arranged at the surface burying oxygen and nitrogen 

beneath, then attenuation of carbon signal from carbon bonded to oxygen or nitrogen would create 

spectra that appeared to suggest excess carbon. Before concluding excess CH2-CH2 is the source for 

excess carbon a review of FWHM for component peaks is required and how the constraints in the 

peak model influence the outcome for optimisation. 

Full Width at Half Maximum 

The width of a photoemission peak as measured is a result of a number of factors that involve 

instrumental, sample and the photoemission process. At a fundamental level, the shape for a 

photoemission peak is determined by uncertainty in the energy for electrons in an atom when 

scattered by a photon. If it were possible to measure a photoemission line without other factors 

then the natural line shape and width for that line would be the lower limit to the FWHM for the 

measured photoemission signal. In the case of photoemission due to scattering of C 1s electrons in 

carbon, a range of line shapes and FWHM are observed in spectra, as-measured, because of 

uncertainty in energy introduced by instrumental factors involving transporting electrons emitted 

from the sample to the detectors. These detectors are positioned to record electrons after 

traversing an energy-filter. The arrangement of these detectors with respect to the energy-filter exit-

plane permits an energy to be assigned to an event occurring at each detector (Figure 6a). 

Uncertainty in energy for an electron is introduced through interpreting a position for a detector as 
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an energy for an electron and the distribution of electron-energies that are accepted by a detector. 

The response of the sample to the emission of an electron also introduces uncertainty in the energy 

of electrons counted by instrumentation. When considering what FWHM should be expected for a 

photoemission line as recorded for C 1s, examining spectra using different instrument modes and 

samples allows an informed decision to be made for a target FWHM.  C 1s spectra from Nylon using 

different energy resolution for the energy filter with better energy resolution than the spectrum in 

Figure 5c yield similar width components to those in Figure 5c. Thus, the FWHM for C 1s 

photoemission from Nylon is not limited to any significant degree by the energy resolution of the 

instrumental mode used to collect these data. The logic underpinning this assertion is now 

described. 

The role played by instrumentation in observed FWHM is more important the narrower the natural 

width for a photoemission line. In the case of carbon, the narrowest of commonly studied 

photoemission lines is obtained for graphite. To understand how instrumentation alters FWHM for C 

1s photoemission, experiments performed for a graphite sample using different operating modes 

creates for the same natural line shape a series of recorded shapes. Two factors that alter the 

recorded line shape for an XPS instrument are the energy filter pass energy (PE) and the dimension 

and influence of apertures within the lens column that transfers electrons from the sample to the 

detectors.  To illustrate the role played by instrumentation on FWHM, C 1s spectra are recorded 

from graphite using two PEs and two aperture settings (Figure 6b and Figure 6c). Aspects of an XPS 

instrument relevant to energy resolution and therefore FWHM are now presented. 

The term pass energy in the context for XPS refers to the energy of an electron entering the energy 

filter (most commonly a hemispherical analyser (HSA)) with direction parallel to the axis of symmetry 

for the energy filter, follows a circular path from the entrance plane to the HSA to the exit plane 

(Figure 6a). The strength of the electric field between two concentric hemispherical electrodes of an 

HSA determines the energy that passes an electron from entrance to exit of the HSA. Energy filtering 

for electrons of different kinetic energies to the PE follow trajectories that disperse in position the 

point of exit at the detector plane to the HSA (Figure 6a). Thus, by placing apertures at the entrance 

to the HSA, a degree of control is achieved for electron trajectories allowed to pass through the 

energy filter. Apertures at the exit to the HSA allow electrons with these limited trajectories 

(imposed by the entrance aperture and electric fields) to leave the energy filter and therefore are 

made available for detection. Hence a combination of PE and aperture widths influence the 

uncertainty in energy for electrons detected with energies close to the PE for an experiment. The 

lower the PE the weaker are forces acting on electrons and therefore, for electrons with different 

energies, the greater the dispersion in position at the exit aperture (Figure 6a). Less obvious is the 

role played by aperture widths to photoemission peak widths. At the heart of the physics involved in 

energy filtering of electrons is the electron-optical properties of the lens column that transfers 

electrons from the sample to the detector. Electrons from the sample enter the HSA by means of 

lenses forming an image at the entrance to the HSA. The image formed may be that of an 

illuminated entrance aperture or an image focused by the electron optics to a specific size, but 

regardless of how this image is formed, the HSA transfers the image at the entrance to the HSA to 

the HSA exit plane with a magnification of -1 with the image dispersed in position depending on 

energy of electrons entering the HSA (Figure 6a). Apertures at the HSA exit plane, either physically 

arranged or logically implemented through detector partitioning, determine the uncertainty in 
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energy for electrons detected. The uncertainty in energy for an electron is a result of the confusion 

between image size and numerous images formed at the detector plane for electrons with energies 

different from the PE. Lowering the pass energy reduces the uncertainty in energy by dispersing 

images with differing energies to a greater degree and/or reducing the entrance aperture-width to 

reduce the size of the image in the energy dispersive direction at the HSA exit plane. Therefore, 

lowering PE and/or reducing aperture-widths reduces the confusion between positional-information 

and energy-information for an electron when detected. These instrumental factors influencing the 

FWHM for measured photoemission peaks are illustrated using C 1s spectra measured from 

graphite. Figure 6b compares C 1s spectra measured from graphite using PE 40 eV and PE 10 eV. 

Figure 6c compares C 1s spectra measured using the same PE 40 eV with different aperture widths 

for the image formed at the entrance plane to the HSA. 

There are two points worth noting from Figure 6 relating to Nylon components. Firstly, C 1s 

measured from graphite has FWHM for PE 40 eV Wide Slot is estimated to be 0.66 eV. Therefore, it 

is unlikely than any component representing C 1s has FWHM below 0.66 eV. Since the components 

used in Figure 5c for Nylon are all close to unity, the implication is that the FWHM for components 

representing Nylon chemistry are limited in FWHM by the sample rather than the instrument energy 

resolution. The second point worth highlighting in Figure 6c specifically is that the apparent binding 

energy for graphite is not identical between PE 40 eV measured using different widths for the slot 

aperture. The difference in apparent binding energy between a wide and a narrow slot is mostly due 

to the position of the narrow slot within the entrance aperture to the HSA. The position of the 

narrow slot image within the entrance slot alters the trajectory for electrons within the HSA 

resulting in a different position at the exit plane and therefore measured energy. This observation 

regarding the position of the narrow slot image within the entrance aperture to the HSA, to some 

extent explains why the line shape for C 1s measured from graphite is less well formed when a wide 

slot aperture is used compared to a narrow slot aperture.  The wide slot aperture is effectively the 

sum of narrow slot apertures with images concatenated to form a tessellation of the wide slot. Each 

such narrow slot, so defined, creates independently C 1s data with the energy resolution shown for 

the narrow slot aperture in Figure 6c, but each spectrum with FWHM close to 0.51 eV is offset in 

energy due to the offset in narrow slot images required to form the tessellation as described. Thus, 

the FWHM for C 1s measured using PE 40 eV and the wide slot aperture is 0.67 eV. Similarly, the line 

shape for PE 40 Wide Slot aperture is less representative of the natural line-shape than if lower PEs 

are used or a narrower slot aperture is available. The disadvantage of better resolution data is lower 

signal to noise for the same acquisition time. It is clear from Figure 6 that shapes in C 1s spectra are 

influenced systematically by instrumental factors. However, since the Nylon sample as measured 

yields components with FWHM close to unity, the instrumental factors highlighted by graphite are of 

lesser importance to line shapes for Nylon. Nonetheless, these instrumental factors exist and deform 

natural line-shapes, albeit to a lesser extent, a consequence of which is extended measurement-

times amplify these instrumental shapes relative to random noise. Thus, one explanation for the 

figure-of-merit for the Nylon peak model in Figure 5c is the extended time period used to measure 

these data, causing non-chemical systematic shapes, that are difficult to reproduce mathematically 

in line shapes, to overwhelm pulse counting noise. When temporal influences couple with imprecise 

line shapes, this results in the residual STD statistic of 3 rather than unity. The following text expands 

on the nature of systematic shapes in Nylon C 1s spectra and how the choice for line shapes alters 

outcomes to optimisation. 



Supplementary Information prepared for the paper:  

Fairley, Neal, et al. “Practical guide to understanding goodness-of-fit metrics used in chemical state 

modeling of x-ray photoelectron spectroscopy data by synthetic lineshapes using nylon as an 

example.”Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 41(1) (2023); doi: 

10.1116/6.0002196 

 

19 
 

 

(a) 

 

(b)      (c)  

Figure 6. (a) Illustration of how pass energy and aperture widths influence energy resolution for 

spectra and therefore FWHM for measured photoemission peaks. The inner arc coloured blue 

represents the trajectory for an electron with kinetic energy equal to the PE for an HSA. The outer 

trajectory coloured red represents the trajectory for an electron with kinetic energy higher than the 

PE. (b) C 1s spectra measured from graphite powder sample using PE 40 eV and PE 10 eV using the 

same default slot aperture referred to as Wide Slot. (c) C 1s spectra measured from graphite powder 

sample using PE 40 eV measured using two different aperture widths. The spectrum labelled C 1s PE 

40 eV Wide Slot is measured using the same operating mode as PE 40 eV data in (b). The spectrum 

labelled C 1s PE 40 eV Narrow Slot makes use of a custom selected area aperture to project an image 

into the entrance aperture for the HSA which is of width approximately one quarter the width of the 

default slot selected area aperture for a Kratos Nova Axis at University of Nantes, France. Note that 

in both (b) and (c) by either lowering the PE or reducing the width of the effective aperture for 

electrons entering the HSA, both result in narrower FWHM than PE 40 using the Wide Slot aperture. 

Specifics of Line Shapes used in Nylon Peak Models 

As described above, FWHM for components in a peak model representing the types of chemistry in 

Nylon is expected to be close to unity. The component table shown in Figure 5c shows all 
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components are close to unity, however there is a subtilty in these results worth noting. Line shapes 

used in Figure 5c are Voigt functions where three components make use of LA(20) while the 

component representing N-C=O uses the line shape LA(80). FWHM reported in Figure 5c 

corresponds to a parameter determined during optimisation, but FWHM for components with 

differing line shapes depend to a lesser extent on the line shape, but the area for a component 

depends on line shape to a greater extent. The dependence of area on line shape can be understood 

by considering different measures for the width of a line shape. Specifically, the width measured at 

different heights within a component differ to a greater extent when moving from the line shape 

LA(20) to LA(80). Figure 7 plots two components in the Nylon peak model adjusted in component 

area to be identical and both have identical FWHM fitting parameters. The difference in height can 

be seen in Figure 7, but if width is measured at different heights below the component maximum, 

one half (FWHM), one fifth and one twelfth of the component height, then it is more obvious how 

changing the line shape alters measured area and width of signal. The fact that Figure 5c makes use 

of the line shape LA(80) for N-C=O signal is significant because underlying the use of LA(80) rather 

than LA(20), the difference in line shape contributes to fitting data from Nylon using three 

components of equal area. Beamson and Briggs fit four components in peak-models to various forms 

of Nylon with the result that N-C=O signal intensity is lower than C-C-C, C-N and C-C=O. Line shapes 

and also background curves may be part of the cause for these differences reported by Beamson and 

Briggs, but the fit shown in Figure 5c is achieved for the given area constraints because of these 

different line shapes. A further point worth considering relating to Figure 5c is the quality of fit 

measured by residual STD and the appearance for the residual plot. 

 

Figure 7. Widths for component peaks with line shapes LA(80) and LA(20) defined for three heights 

corresponding to half height (n=2), one fifth height (n=5) and one twelfth height (n=12). Both 

C-C-C LA(20)

N-C=O LA(80)

C-C-C LA(20)

N-C=O LA(80)

n=2(1eV)

n=5(1.55eV)

n=12(1.97eV)

n=2(1eV)

n=5(1.63eV)

n=12(2.26eV)

288 287 286 285 284 283 282 281 280

Binding Energy (eV)
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components are created with identical area. Note how for the same component area L(80) is lower 

in height than the component with line shape LA(20). 

Goodness-of-Fit 

Fitting a peak model to data is performed by nonlinear optimisation which makes use of a figure-of-

merit to identify the best-fit-curve formed by summing components in the peak model. The 

objective for optimisation is to select components to minimise the figure-of-merit, but in the 

absence of suitable heuristics in the form of line shapes and constraints to component parameters, a 

figure-of-merit may and often does return fits to data that fail-the-test of comparison to physical 

outputs from the peak model. Accepting a peak model for which the fit to data that does not meet 

the expectation of simply eliminating noise is often necessary. However, a peak model that does not 

fit adequately data is possibly a poor model for physical processes. So, there must be some 

compromise between, on the one hand, a fit capable of high-quality data-reproduction resulting in a 

peak model for which components emerge from optimisation with FWHM that are too narrow, for 

example, and on the other hand, accepting physically meaningful components that do not fit the 

data well enough to rely on the outcomes from optimisation. The happy median is a fit of a peak 

model to data that yields, by means of line shapes and constraints to optimisation-parameters, less 

than optimum fitting statistics (where a suboptimal figure-of-merit can be explained through 

understanding sources for uncertainty in the measurement process) that also creates outputs which 

aid an understanding of a material. Our sense for goodness-of-fit is therefore somewhat subjective, 

but understandably, must rely on fitting statistics such as the figure-of-merit used in optimisation 

coupled with visual uniformity/randomness observed in the residual plot following optimisation. 

However, in the case of Figure 5c the residual plot is not so random and the residual STD is not unity, 

therefore these fitting statistics needs an explanation which follows. 

Fitting statistics are now considered for Nylon data making use of N 1s spectra rather than C 1s for 

the following reason. A peak model such as that shown for C 1s in Figure 5c has intrinsic uncertainty. 

Owing to the need for four components in the peak model of unknown shape combined with highly 

correlated signal from C-C-C, C-C=O and C-N chemistry, an analysis based on C 1s data from Nylon 

might cloud an understanding for the response of fitting statistics to optimisation. Hence, to observe 

the consequence to fitting statistics of extending acquisition time in particular, the simple case of N 

1s signal from Nylon is easier to interpret than the C 1s spectra of Nylon.  

N 1s photoemission from Nylon should be a consequence of one chemical state for nitrogen. 

Therefore, a trivial peak model consisting of a single component representing N 1s photoemission 

and a background curve represented by a linear approximation is sufficient to model N 1s data from 

Nylon. A sequence of 33 separate spectra measured using a dwell-time of 200ms provide the 

necessary data to trace the influence of accumulating N 1s with incrementally increasing dwell-time 

per data-bin in a spectrum. Figure 8 shows the fit of one component with line shape LA(1,1.09,828) 

applied to 33 spectra formed from the original 33 N 1s spectra by summing spectra to create spectra 

with increments of 200ms in dwell-time per data bin. Figure 8a is the first spectrum in the sequence 

of spectra acquired with dwell-time per data bin equal to 200ms. The spectrum in Figure 8b is the fit 

of the peak model in Figure 8a to the spectrum obtained by summing all 33 individually acquired 

spectra. These two spectra and fits of the same peak model to data are examples of spectra used to 

monitor changes to the residual STD when the same peak model is fitted to data with increasing 
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dwell-time per data bin (Figure 8c). Note how the residual STD for data acquired with short 

acquisition-times in Figure 8a appears to suggest superior data reproduction than the residual and 

residual STD in Figure 8b (where the acquisition time is 33 times longer than for the data in Figure 

8a). An explanation for these differences in fitting statistics is that, for the lower signal-to-noise data 

in Figure 8a, systematic differences between the peak model and data are less important to fitting 

statistics than the better signal-to-noise data in Figure 8b. Accumulating counts for N 1s 33 times 

longer than the data in Figure 8a allows systematic shapes to accumulate and dominate random 

noise, hence the residual plot in Figure 8b exhibits shape structure which is not immediately obvious 

in the residual plot in Figure 8a. The trend plot of residual STD in response to increasing acquisition-

time per data-bin demonstrates that the shapes seen in the residual plot in Figure 8b progressively 

grow with each increment in acquisition-time. The implication from the analysis leading to the 

results in Figure 8 is that fitting statistics for data collected with good signal-to-noise should not be 

expected to conform to the fitting statistics expected for pulse counted data. Similarly, low signal-to-

noise data when fitted with a peak model that returns fitting statistics expected for pulse counted 

data should not be seen as returning a physically superior result than high signal-to-noise data for 

which fitting statistics appear to be inferior. 

A similar analysis to that performed for N 1s shown in Figure 8a, 8b and 8c can be performed for the 

corresponding C 1s data measured as part of the same experiment that generated both N 1s and C 

1s spectra, each with acquisition-time per data bin equal to 200ms. The results for C 1s data are 

comparable to that obtained from N 1s, in the sense that accumulating signal for longer periods 

alters the fitting statistics for the peak model in Figure 5c applied to these C 1s spectra with 

incrementally longer acquisition-times as shown in Figure 8d. Note that the residual STD and residual 

plots (Figure 8e) for the constructed spectrum with acquisition time equal to the acquisition-time 

invested when measuring the spectrum in Figure 5c are very similar. 
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(c)     (d) 

 

(e) 

Figure 8. (a) Fit of a single component peak model to N 1s spectrum acquired using acquisition time 

per data bin equal to 200 ms. (b) Fit of a single component peak model to N 1s spectrum acquired 

using acquisition time per data bin equal to 6.6 s. (c) Profile of changes to the residual STD for fits 

equivalent to those shown in (a) and (b) applied to spectra with incrementally (200 ms per 

increment) increasing acquisition time per data bin. (d) Profile of changes to the residual STD for fits 

equivalent to the fit of the four-component peak model in Figure 5c applied to C 1s spectra with 

incrementally longer acquisition times. These C 1s spectra are similarly constructed to N 1s spectra 

from which the profile (c) is formed, by progressively summing 33 C 1s spectra each measured with 

acquisition time per data bin equal to 200 ms. (e) C 1s spectrum constructed by summation of 33 

individually acquire C 1s spectra fitted with the peak model used in Figure 5c. Note the similarity in 

the residual shape between Figure 5c and (e). 

Constraints to Optimisation Parameters 

Constraints to optimisation parameters are the means by which optimisation is guided towards 

solutions that are physically acceptable. The need for constraints is because optimisation is purely 

based on mathematics and not chemistry. Nonlinear optimisation applied to fitting curves to data is 
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a general term used to describe a range of algorithms. A common theme, for these essentially 

different ways of determining the best-fit-curve to data, is that all nonlinear optimisation is 

performed by making a guess at a set of parameters (used to define the curve) and then testing the 

quality of fit by evaluating the figure-of-merit deemed most appropriate for the data in question. 

Another common theme for these algorithms is that none are capable of certainty that the 

algorithm will deliver the true optimum set of parameters for the curve with respect to the data. An 

important point to appreciate when working with XPS is that, the minimum figure-of-merit for a 

given set of components in a peak model is not necessarily the best-fit-physical-curve constructed 

for the data. The reason the best-fit-curve differs from the best-fit-physical-curve is component-

curves are unlikely to be the exact shapes for photoemission peaks or background shapes.  

When attempting to fit a peak model constructed from component-curves that are not precisely the 

true shapes in data, the method used to prevent nonphysical outcomes from optimisation involves 

applying constraints to optimisation parameters, such as forcing two components to have equal 

area. Constraints to optimisation parameters take two forms, namely, relational constraints which 

make it possible to force two components to have the same area, or interval constraints. Interval 

constraints, as the name implies, allows parameters during optimisation to take on values within a 

range of acceptable values. For example, a lower limit to an interval for FWHM of 0.9 eV might be 

considered appropriate for components defined for C 1s Nylon peak models. The objective for these 

constraints is to obtain by optimisation a best-fit-physical-curve rather than a mathematical best-fit-

curve. The example of peak model and data in Figure 8e is an illustration of a best-fit-physical-curve 

obtained by optimisation using relational constraints between component area parameters. The 

assumption made for the peak model in Figure 8e is that the common chemistry to a Nylon polymer 

is nitrogen, oxygen and one chemical state for carbon that all appear in Nylon in equal proportions. 

If this assumption is true, then the peak model in Figure 8e, when fitted to data, is designed to 

evaluate the amount of carbon bonded to carbon without influence from nitrogen and oxygen. If the 

assumption made is false, then the peak model must be seen as just one feasible mathematical 

solution for fitting data which is of limited physical meaning. 

Constraints in peak models play an important role in how XPS is used. Philosophically, the primary 

reason peak models are constructed for XPS data is to test if a given hypothesis for the chemistry of 

a sample is possible. Once enough research into the chemistry of a sample has been performed to 

“prove” the hypothesis is true, the secondary use for a peak model is to measure chemical changes 

in a sample that alter the relative proportions of atoms with known chemical states. Tertiary uses for 

the peak model are to observe when new chemical state for atoms emerge as materials are modified 

or evolve. Typically, the emergence of new chemical states, manifested by change in shapes that 

cannot be accounted for by alterations in intensity alone, require a return to the primary objective 

for constructing a peak model, namely, to test a new hypothesis about the chemical composition of 

a sample by introducing additional components and applying different constraints. 

Application for a Constrained Peak Model 
Data from a new experiment making use of a Nylon sample is presented in Figure 9. The analysis in 

Figure 9a illustrates a simple use of the peak model used in Figure 5c and Figure 8e. The hypothesis 

for these new Nylon 6 data is that an argon-cluster ion-beam operating in a light-touch mode 

designed to clean a polymer surface of adventitious carbon can be used effectively for cleaning 
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Nylon 6. These two C 1s spectra are acquired from the as-received surface and the surface following 

sputtering using an argon cluster ion gun for 15 s. The peak model as designed, making use of 

relational constraints between area optimisation-parameters, returns the intensity for CH2 chemistry 

that implies the as-received surface has an excess of CH2 chemistry compared to that expected for 

Nylon 6. In principle, sputtering the surface for 15 s should remove excess carbon. In practice, 

sputtering the surface for 15 s results in spectra for which the peak model does return the expected 

ratio 1:1:1:3 for chemical state of carbon in Nylon-6, which would appear to be a positive outcome 

for sputtering and the peak model.  

The experiment performed also attempted to find evidence of damage to the Nylon caused by 

sputtering through repeating sputter cycles and recording spectra following each sputter cycle. If 

judged purely by fitting statistics, applying the peak model in Figure 8e to these additional sputter 

cycles returned similar results to that obtained after the first sputter cycle. However, after inspecting 

the outcomes for the peak model fitted to these spectra, components show instability in FWHM and 

energy for components. Instability in FWHM and energy suggests constraints used to fit data in 

Figure 5c and Figure 8e are insufficient when applied to data with signal-to-noise characteristics as 

measured from sputtered Nylon. Since a different instrument was used to acquire data in Figure 9 

from that used for data in Figure 8, shapes within data from the sputter experiment in Figure 9 may 

differ from spectral shapes in Figure 8. Hence, analysis of the data in Figure 9 raises some discussion 

points as follows. Figure 9a illustrates that, despite optimisation achieving a fit to data of 

comparable quality (visually inspection of residual traces in Figure 9a) the peak model as applied 

does not perform well for the as-received spectra in the sense that FWHM for C-C=O is inconsistent 

between as-received and sputtered Nylon in Figure 9a. Specifically, the component assigned to C-

C=O changes in width (as-received FWHM 1.66eV compared to sputtered surface FWHM 1.28eV). 

Changes in FWHM of this nature for data measured from the same sample and instrument are 

difficult to justify for identical chemical states in carbon. Such changes in FWHM are possible 

between spectra measured using different instruments and operating modes. Hence, the level of 

concern raised by differences in FWHM between Figure 9b and Figure 5c is not so high as when the 

only difference between two spectra is 15s sputtering with an ion gun. The general shape for the 

peak model between Figure 5c, Figure 8e and Figure 9a is observed in the as-received peak model. If 

it is proposed that the sample and peak model corresponding to the spectrum labelled “After 15 s 

sputtering” is most representative of Nylon 6 measured (under identical operating conditions used 

to acquire all spectra during the sputter experiment), then applying the peak model as stated with 

additional relational-constraints to force a single fitting parameter for all FWHM and a single fitting 

parameter for energy applied through fixed offsets between components, the new peak model 

alters the outcome for component areas as shown in Figure 9b. Assuming the hypothesis is correct, 

Figure 9b suggests that excess CH2 chemistry is also a feature of the as-received Nylon 6 sample. The 

suggestion from the fits, with the additionally constrained peak model to data in Figure 9b, is that 

area constraints alone used in Figure 9a are insufficient to properly account for the highly correlated 

signal emitted from atoms with chemistry C-C-C, C-C=O and C-N. While better stability in FWHM and 

energy is achieved for the peak model in Figure 9b, an assumption that relational constraints 

imposed for FWM and energy used in Figure 9b are physically meaningful is somewhat weak, in the 

sense that, relying on FWHM and energy offsets determined for highly correlated signal is in itself 

questionable. Nevertheless, these results shown in Figure 9 do imply Nylon 6 in an as-received state 
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can be expected to have an excess of CH2 chemistry. A result which is consisted with the analysis of 

Nylon in Figure 5c and Figure 8e. 

Consequences of Constraining Optimisation Parameters 
The role played by constraints forcing relationships between optimisation parameters has an effect 

on results obtained by fitting peak models to data and should not be underestimated. All peak 

models presented thus far make the assumption the understanding for Nylon chemistry detailed in 

Figure 3b manifests directly in relative intensities for photoemission from different chemical state. 

However, quantification based on survey data shown in Figure 4 suggests oxygen atoms contribute 

less to XPS signal than nitrogen and carbon compared to the theoretical 1:1:6 ratio for Nylon 6 or 

Nylon 6,6. However, quantification results from XPS should be taken as a guide rather than an 

absolute statement of composition. For example, if Nylon 6 is beneath a layer or even islands of 

adventitious carbon, then the intensity response to energy of lower energy electrons, such as O 1s 

compared to higher energy C 1s photoemission, can account for O 1s appearing less intense than C 

1s signal. It is also possible the basic use of Scofield cross-sections combined with escape depth 

correction and assumptions about instrumental transmission response could similarly place doubt 

on the assertion that oxygen is less prevalent than expected for Nylon. Other arguments might be 

made, along the lines of that XPS induced changes to sample chemistry (not true for Nylon) or 

orientations for polymer backbone chemistry with respect to the surface (allowing effects related to 

surface sensitivity) to alter photoemission intensities from those expected for a material. Therefore, 

any assumptions leading to constraints to optimisation parameters should be compared to other 

plausible assumptions implemented as different relational constraints between components. The 

results for peak models in Figure 10 illustrate how changes to parameter constraints alter outcomes 

for the same data. These two fits in Figure 10 demonstrate the importance of publishing full details 

of how a peak model is constructed. 

Beamson and Briggs, XPS of Polymer Database include examples of peak models for both Nylon 6 

and Nylon 6,6. For both materials the component in the Beamson and Briggs peak models 

representing C 1s photoemission from carbon of the form N-C=O is computed with area less than C-

N and C-C=O. To illustrate how results of this nature can occur, two different peak models are 

compared in Figure 10. These two peak models differ only in the relational constraints for area 

between components. If it is assumed, as shown in Figure 10a, the area for N-C=O is allowed to be 

different in area from C-N and C-C=O, but correlated signal indicated in Figure 3a for C-N, C-C=O and 

C-C-C are constrained in the ratio 1:1:3, then the results of fitting this peak model to data in Figure 

10a indicates N-C=O intensity is deficient compared to other carbon chemistry. The table displayed 

in Figure 10a presents the results of fitting the peak model to data and also includes information 

regarding the relational constraints applied to component area. Each component in the peak model 

is listed and identified by a letter. Relational constraints for component area are defined by these 

letters and a multiplicative scale factor. The table for the peak model in Figure 10a indicates the 

components labelled B and C are forced during optimisation to maintain the area of the component 

labelled A multiplied by a third. Constraints of this form would be appropriate given a sample with 

the exact stoichiometry of Nylon 6 and all C 1s signal from any of these chemical states are 

measured without bias. 



Supplementary Information prepared for the paper:  

Fairley, Neal, et al. “Practical guide to understanding goodness-of-fit metrics used in chemical state 

modeling of x-ray photoelectron spectroscopy data by synthetic lineshapes using nylon as an 

example.”Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 41(1) (2023); doi: 

10.1116/6.0002196 

 

27 
 

The peak model in Figure 10b displays a table of constraints that provides a solution that ensures N-

C=O is in the same proportions as C-N, C-C=O. The outcome in terms of percentage area when these 

two peak models in Figure 10 are optimised with respect to data is different. It is therefore clear 

assumptions embodied in constraints alter the interpretation of carbon chemistry. For these 

reasons, to permit reproducibility of published results, peak models and fits of peak models to data 

should include the methods used to constrain component parameters that achieve the outcomes 

reported. The corollary to this statement is line shapes, which act as a constraint when fitting a peak 

model to data, should be reported as well as parameter constraints used.  

  

    (a)      (b) 

Figure 9. C 1s spectra acquired from a sample labelled as Nylon 6 which is cleaned making use of an 

argon cluster source ion gun. Two different peak models are applied to the spectrum acquired from 

the as-received surface. (a) Peak model used to fit data in Figure 5c and Figure 8e applied to two C 1s 

spectra measured from Nylon 6. The peak model used in (a) makes use of relational constraints for 

the area of the three smaller components only. (b) Peak model obtained by fitting the peak model as 

defined for (a) after fitting to the spectrum labelled “After 15 s sputtering” with further constraints 

applied to all components for FWHM and energy. The resulting peak model is such that all 

components FWHM are fixed in relative width to the FWHM of one component and the energy 

offset between all components is fixed relative to one energy. FWHM and energy optimisation 
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parameters, constrained by these relationships, are allowed to adjust within interval constraints 

which limit the parameters to ranges of values. The limits for these interval constraints have no 

influence on the final fits as shown. The spectrum labelled “After 150 s sputtering” is acquired from 

the final state of the Nylon surface following 150 seconds of sputtering. 

 

(a) 

 

(b) 

Figure 10. Two peak models for Nylon constructed with identical numbers of components, making 

use of identical line shapes, fitted to the same spectrum. (a) Peak model constructed assuming C-N, 

C-C=O and C-C-C component areas are in the ratio 1:1:3. (b) Peak model constructed assuming C-N, 

C-C=O and N-C=O component areas are in the ratio 1:1:1. 

Conclusion 
Nylon XPS spectra have been used to examine aspects of fitting bell-shaped curves to XPS data. In 

the course of doing so, the importance of optimisation parameter-constraints to successful chemical 

state analysis of XPS data is demonstrated. Examples involving different peak models defined by 

different parameter-constraints applied to C 1s spectra measured from Nylon are used to show it is 
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possible to create different outcomes for the same set of components in a peak model.  Different 

outcomes for the same number and shape of components in a peak model fitted to the same 

spectra is used to make the case for publishing both line shapes and relationships between 

components that influence scientific conclusions gleaned from fitting peak models to XPS data. 

Peak models developed for Nylon C 1s spectra are further used to show that fitting statistics used to 

infer quality for a goodness-of-fit, despite being carefully constructed to reflect chemistry, do not 

achieve the quality of fit expected for pulse counted data. Residual STD figure-of-merit and 

uniformity for residual plots do not conform to what is expected for pulse counted data, unless 

sufficiently short dwell-time per data-bin is used to acquire data. At each stage in the construction of 

peak models, aspects of XPS are presented to explain, for data acquired over time intervals that 

allow systematic deformations in data to accumulate, why it is unreasonable to expect 

mathematically defined line shapes to fully describe photoemission as-measured. The role of fitting 

statistics in relation to fitting curves to data has been discussed. In particular, measures for 

goodness-of-fit are shown to be dependent on the way data are acquired and that the expected 

residual standard deviation of unity for pulse counted data is unrealistic for data acquired over 

extended periods in time. The conclusion is that peak models designed with imperfect line shapes, 

compensated for by appropriate optimisation parameter-constraints to provide adequate 

description for chemical properties, do not necessarily yield well-formed residual plots nor is it 

required to fit data with residual standard deviation of unity. 


