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Abstract 
This article provides an overview of data treatment aimed at understanding the X-ray Photoelectron 

Spectroscopy of poly methyl methacrylate. Videos detailing data analysis steps provide the technical 

aspects of the analysis, therefore the text below is designed to supplement videos by providing the 

context for the material and methods used in the analysis. Videos focus on methodology in CasaXPS 

rather than explanations of how and why these data treatments are performed. The combination of 

this article and videos provides a case study of fitting peak models to data. These peak models are 

constructed using mathematical line shapes to define components of the peak model. Components 

to peak models are designed to correlate photoemission signal with chemical state, which is 

achieved by identification of binding energy and relative intensity of photoemission signal that can 

be attributed to atoms in specific chemical environments. While the primary thrust of this case study 

is correlating components to chemical state, a technique to achieve this end makes use of linear 

algebraic concepts to facilitates the construction of a peak model that elucidates the nature of 

PMMA spectra, as-measured. 

Introduction 
Polymers are arguably materials that are best suited to analysis by X-ray Photoelectron Spectroscopy 

(XPS)1. Primarily, photoemission from carbon results in well-formed, mostly symmetric, bell-shaped 

intensity distributions about a well-defined mean energy, that responds to bonding between atoms 

by shifts in energy from the nominal binding-energy of electrons in an atom. The uniform structure 

of most polymers is ideal for XPS as these mostly conform to the concept of homogeneous materials, 

a necessary condition for easy quantification of a sample in terms of atomic concentration2. Hence, 

the XPS of polymers offers, through binding energy shifts, chemical state information for atoms and, 

through area of photoemission distributions, the relative proportions of different chemical state for 

atoms within a polymer. Further, many polymers are formed from carbon bonded to low atomic 

number elements. Bonding electrons in polymers rarely exist between carbon and d-orbitals, so 

complex initial- and final-state energy-multiplicity3,4, observed in metal-oxide photoemission, is less 

of an issue for the XPS of polymers. Consequently, peak models constructed from components with 

shapes defined by Voigt-like curves are more plausible, when applied to polymer materials, than the 

XPS of heavy-metal oxide materials. These considerations all support the use of XPS when studying 

polymer materials. 
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The following represents the analysis5 of poly methyl methacrylate (PMMA) by XPS. The expected 

relationship between atoms in PMMA is shown in Figure 1. The XPS of PMMA is a good case study 

because carbon appears in four distinct chemical states (C-CH, C-C-C, C-O and O-C=O), while oxygen 

in PMMA are examples of single and double bonding of oxygen with carbon. Photoemission from C 

1s and O 1s subshells respond to these chemical bonds by shifts in binding energy, that can be 

identified in XPS data using mathematical modelling of C 1s and O 1s photoemission. Precise 

numbers of components forming peak models, must follow the chemistry shown in Figure 1. These 

mathematical models are used to test the hypothesis: the sample is PMMA. By fitting four 

component-curves in the proportion 1:1:1:2 (measured by area beneath a component-curve) to C 1s, 

and fitting two component-curves of equal area to O 1s data, the relationships between atoms in 

Figure 1 are shown to be feasible for a sample under analysis. Despite the apparent simplicity for the 

analysis as describe thus far, PMMA also provides an example for an aspect of XPS that is sometimes 

overlooked. That is, XPS measurement causes alteration to the polymer chemistry6. If an experiment 

aimed at understanding the chemistry of PMMA is repeated many times, it becomes apparent that 

the spectra change with each iteration and these changes reflect an alteration of the material during 

the measurement process. An experiment of this nature is performed and the analysis of these data 

is presented below. 

 

Figure 1. poly methyl methacrylate. Carbon and oxygen atoms are colour coded, where each colour 

represents a bonding environment for atoms that cause a specific shift in binding energy for C 1s and 

O 1s photoemission. The number of carbon atoms with the same colour is used to infer similar 

chemical shifts in energy and therefore photoemission intensity for these five carbon atoms 

manifests in XPS C 1s spectra in the proportions 1:1:1:2. XPS O 1s spectra similarly show two distinct 

photoemission peaks due to a double bond O=C and a single bond C-O-C. 

Modelling Photoemission using Mathematical Curves 

Line shapes for Polymers 

Core-level electrons, even for atoms within solid state, are associated with well-defined quantized 

energy-levels, which when scattered by photons of a precise energy, manifest in energy spectra as 

counts, distributed about the mean energy, with shapes similar in appearance to Gaussian or 

Lorentzian functions. Isolated photoemission peaks, in particular s-orbitals, tend to favour a 

Lorentzian (Eq. A1) distribution of signal about the mean energy. However, after transfer of signal 

from the sample through the spectrometer, also allowing for the response of the sample to charge 

compensation, the distribution of signal as measured is often different from a pure Lorentzian. 

Hence, the line shapes described in the Appendix includes a Voigt function formed by convoluting a 

Lorentzian with a Gaussian (Eq. A4, Eq. A5). The Gaussian (Eq. A2), when convoluted with a 
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Lorentzian, models the spectrometer contribution to the apparent photoemission peak shapes. A 

corollary to these considerations is that, for a given photoemission line, such as C 1s or O 1s, the 

apparent peak shape differs between instrumental modes (in the form of pass energy and lens 

modes) and differs between instruments. Thus, while the number of component-curves forming a 

peak model remains constant and independent of instrumental factors, the line shape for each 

component may differ due to differences in instrumentation. A Voigt function, which is a special case 

of the convolution in Eq. A4, represents a class of line shapes. Examples of these Voigt line shapes 

are shown in Figure 2. The area beneath each curve in the set of Voigt line shapes shown in Figure 2 

is identical. However, owing to the change of characteristic shape between a line shape that favours 

a Gaussian (LA(10)) to a line shape that favours a Lorentzian (LA(90)), the height of the line shape for 

the same area and FWHM reduces as the m parameter (Eq. A5) increases. Consequentially, 

components in a peak model defined with different Voigt line shapes have the potential to alter the 

intensity as measured by components when fitted to data. Thus, in choosing a line shape for a 

component, the line shape represents a constraint on the possible outcomes when fitting a peak 

model to data and allows alteration to the relative intensity of components to a peak model 

obtained by fitting the peak model to data. The subject of line shapes and their influence on peak 

models constructed to represent the four chemical states of carbon in PMMA is relevant to the 

outcomes described below. 

 

Figure 2. LA(m) line shapes (Eq. A5) generated by varying the line shape parameter m within the 

interval [10,90]. All line shapes are plotted using the same area and the same full width half 

maximum (FWHM). Note how the height of these line shapes changes as m varies between 10 and 

90. 

Peak Model Optimisation Constraints 

Components to a peak model are a set of line shapes together with parameters that define the 

energy, the width and intensity of a photoemission peak. Since the physics of the photoemission 

process dictates that photoemission signal from an atom in a specific chemical environment must 

take the form of a distribution about a characteristic energy, with a characteristic width and 

intensity that is in proportion to atoms expected for a given sample, these energy-, width- and 

intensity-parameters must be restricted during optimisation7. These restrictions to component 

parameters prevent fitting of a peak model to data returning nonphysical values. For example, the 

peak model in Figure 3, when fitted to C 1s data acquired from a sample presented as PMMA, 

returns component parameters that are compatible with the expected chemical environments for 
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carbon in PMMA. Specifically, the proportions for components (measured by area) are in reasonable 

agreement with the chemistry of PMMA and components are shifted in binding energy as expected 

for PMMA. By way of contrast, Figure 4 illustrates a peak model, in the absence of any constraints, 

that yields outcomes for component parameters which fail to return meaningful values for carbon in 

PMMA. Figure 4 represents a mathematical solution to fitting four unconstrained components in a 

peak model to the same data in Figure 3, which is of little physical value. The role of parameter 

constraints in the analysis of XPS data by peak models is highly significant to outcomes. 

 

Figure 3. Peak model constructed for PMMA measured using NEXSA G2, pass energy 20. The 

constraints applied to optimisation parameters are displayed in the top-most table. The constraints 

of significance to the component intensities and binding energies are the two relational constraints in 

which the FWHM of the C-C component is forced to be identical to the FWHM of the CH component, 

and the area of the C-O component is identical to the area of the C-C component.  Interval 

constraints, although defined for all other parameters, in this example, do not play a role in limiting 

the optimisation adjustments to parameters. 
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Figure 4. The same data shown in Figure 3 is fitted using a peak model using different line shapes and 

no relational constraints of the form used in Figure 3. An equal number of four components with line 

shapes using the legacy line shape GL(30) (Eq. A6) are allowed to adjust within wide interval 

constraints. When optimisation is applied, the result is a nonphysical outcome, in the sense that, 

components to the peak model cannot be assigned to chemical state for carbon within PMMA. 

Types of Constraints to Optimisation Parameters 

Energy, width and intensity parameter-constraints may take one of two forms, namely, interval 

constraints or relational constraints. Interval constraints limit a parameter from accepting a value 

that is outside of a range of values. Relational constraints force a parameter value within one 

component to the value of a second component. Both types of constraints are illustrated in Figure 3, 

while the peak model in Figure 4 makes use of interval constraints only. The peak model in Figure 4 

is effectively unconstrained and, when optimisation selects the best fit for these C 1s PMMA data, 

the results are of no scientific value. When relational constraints (which are still of a limited nature 

compared to the freedom afforded to the other optimisation parameters) are applied to the peak 

model in Figure 3, the constraints provide guidance to the optimisation algorithm that yields four 

components to the peak model with energy offsets and relative intensities that are consistent with 

PMMA chemistry. These constraints in Figure 3 are necessary to achieve the result shown, but these 

constraints presuppose the sample chemistry is that of PMMA. It should be noted that, assuming the 

sample is PMMA has a greater influence on the design of the peak model in Figure 3 than imposing 

these relational constraints, namely, the peak model is constructed using four components, only. 

Every assumption in the form of constraints or the number of components represents a bias 

introduced into the analysis. When constructing a peak model, if the desire is to gain information 

about possible chemistry for a sample, the fewer assumptions, the more likely additional 

information is discerned from fitting the peak model to data. For example, it would be possible to 

force, through area constraints, the exact stoichiometry of PMMA, however, it is preferrable to 

introduce limited constraints, such as the two relational constraints in Figure 3, on the bases that a 

peak model with fewer constraints may provide additional information, over and above, 

demonstrating that PMMA is a feasible chemistry for the sample. For example, the more restrained 

use of constraints for the peak model in Figure 3, returns four distinct chemical states, three of 

which are identical in intensity, while the CH component intensity suggests an excess of CH type 

carbon compared to C-C, C-O and O-C=O environments for carbon. If a more rigid set of constraints 

are used to force all four components to obey the stoichiometry of PMMA, the only hint that the 

model is less than perfect would be inferior residual statistics, which are not directly open to 

interpretation in terms of chemistry. 

Modelling Photoemission using Curves from Data 
Analysis of polymers by peak models constructed from mathematical line shapes is the most direct 

and most used method for identifying chemical state. However, simply because a peak model, when 

optimised to fit data achieves good fitting statistics8, this does not prove a perceived sample 

composition is correct. A case in point is the peak model in Figure 3. The sample is assumed to be 

PMMA and, in constructing the peak model, it is assumed the spectrum in Figure 3 is entirely due to 

photoemission from PMMA. The model fits these data with fitting statistics supporting the ability of 

four components in the peak model to concur with the hypothesis of PMMA as the source for the 

spectrum. The only hint that signal originating from other than PMMA is the apparent excess of CH 
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type signal. The expected ratio for PMMA for C 1s photoemission is 2:1:1:1, which is close enough to 

the results presented in Figure 3 to conclude that PMMA is most likely the composition of the 

sample. Nonetheless, a lingering doubt that the peak model may be an over simplification is 

confirmed by extending the experiment to multiple iterations of the same photoemission lines. 

Figure 5 displays spectra measured from PMMA over ninety experiment cycles recording C 1s, O 1s 

and valence band spectra. The colour scales used to plot these spectra highlight the evolution in 

spectra in all three energy intervals. The fact that some polymers are degraded during analysis by 

XPS is well known. PMMA is one of these polymers that degrade, so that results shown in Figure 3 

may suggest that, even for the first iteration of the measurement in the set of iterations in Figure 5, 

the C 1s spectrum in Figure 3 may be subject to some alteration during the measurement of O 1s or 

valence band spectra. The degree of change to the initial PMMA material can be assessed by analysis 

of the data shown in Figure 5 using techniques based in linear algebra. Applying these linear 

algebraic techniques to spectra in Figure 5 allows an estimate for the rate of degradation. More 

importantly, linear algebraic techniques also show the extent to which degradation must be 

accounted for, if a precise peak model for C 1s measured from a pristine PMMA sample is desired. 

Specifically, an analysis of the data in Figure 5 suggests the need for additional components to a 

peak model to account for, unavoidable differences in chemistry from the expected chemistry 

shown in Figure 1. 

Applying linear algebraic techniques to data9,10 in Figure 5 allows an investigation into how many 

component-spectra are required to construct a model. The definition of a model differs between a 

model constructed from mathematical line shapes and a model formed from component-spectra 

calculated from data. Component-spectra calculated from data are not correlated with chemical 

bonds, but are the sum of photoemission from ensembles of chemical bonds that can be identified 

as a phase of a material, for example pure PMMA chemistry as defined by Figure 1. A model formed 

from component-spectra are fitted to data in a linear least squares sense and must fit to each 

spectrum in the original data set with equally good precision. The fitting procedure is therefore very 

rigid and unforgiving in the sense that the component-spectra must include all the shape 

information required to fit the original spectra without allowing for energy shifts or broadening of 

features. Peak models constructed from components with mathematical line shapes and fitting 

parameters are open to shifts and changes in width to photoemission distributions, which are 

determined by nonlinear optimisation algorithms, are more flexible and each component to the 

peak model is interpreted as a specific chemical state in a material. Therefore, despite gaining 

information about spectra through constructing component-spectra-from-data, peak models in the 

image of Figure 3 are essential to interpreting the meaning for component-spectra calculated from 

data. These two approaches to XPS data analysis are therefore complementary rather than separate 

paths to a solution. 
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Figure 5. XPS of PMMA performed over 90 iteration cycles in which C 1s, O 1s and valence band 

spectra are repetitively measured without altering the analysis position or any other intervention 

that would explain alterations in spectra as shown. 

Principal Component Analysis 

Given data of the form presented in Figure 5, the first problem is to quantify the number of 

component-spectra that would be required to represent spectroscopic shapes in these data. It is the 

role of Principal Component Analysis (PCA) to furnish information of this nature. PCA does not 

compute from spectra spectroscopic shapes. Rather, spectra are transformed into mathematically 

equivalent abstract spectra, in the sense that each spectrum in the original data set may be specified 

using a linear combination of the abstract spectra. The purpose of computing these abstract spectra 

is to count the number of abstract spectra that include sufficient variation in intensity to be 

considered different from noise. The number of abstract spectra that differ from noise is an 

indication of how many component-spectra should be sought. Abstract-spectra, limited in number to 

the abstract-spectra distinct from noise, serve as inputs to an operation aimed at reducing the 

influence of noise on the spectra in Figure 5. Replacing each spectrum in Figure 5 by a linear least 

square fit of these chosen abstract-spectra provides spectroscopic data with reduced noise 

characteristics. 

Calculating Component-Spectra from Difference Spectra 

The objective in forming difference spectra, is to partially remove from one spectrum, a contribution 

of the other spectrum. By forming a sequence of difference spectra, that offer incremental changes 

in the contribution of one spectrum to the other, a visual representation of these changes in spectra 

are made available for inspection. Component-spectra are selected from a list of difference spectra. 
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The success of failure of calculating component-spectra depends on the quality and rate of evolution 

within the data set. While is certain circumstances, identifying component-spectra that correspond 

to specific chemical state for an atom, it is often the case, as demonstrated by the analysis of 

iteratively measured C 1s spectra from PMMA, it is not possible to separate the chemical states of 

carbon within PMMA, but it is possible to identify PMMA as a distinct material and a material that is 

created from PMMA during the measurement process.  

Using C 1s spectra shown in Figure 5 only, it is possible to compute difference-spectra using subsets 

of these C 1s spectra (Figure 6). A subset is selected to include a sufficient number-of-spectra, that 

were measured sequentially, to permit PCA to demonstrate that the subset of spectra belongs to a 

two-dimensional subspace and therefore capable of approximation by two component-spectra only. 

Using the first two most significant abstract-spectra, the subset of spectra are replaced by fitting, to 

each spectrum, these two abstract-spectra, then replacing the original spectra by these least squares 

fit of abstract-spectra to data. Assuming the evolution in spectral shapes is due to XPS of PMMA and 

therefore a continuous incremental change, difference-spectra are formed from the first and last 

noise-reduced approximate spectra that allows an estimate for both spectra from PMMA and the 

degraded PMMA to be obtained. Performing this calculation using different subsets, selected over 

different periods within the experiment, furnishes alternative perspectives for spectra from PMMA 

and the degraded PMMA. Iterations in analysis steps making use of subsets from the initial phase of 

the experiment and the latter phase demonstrates that, at all measurement iterations, PMMA is 

present and, more importantly, it is feasible that the degraded form of PMMA is also present in all 

spectra, including the first measurement performed on PMMA. Figure 7a shows two component-

spectra calculated through analysis of data shown in Figure 6. Note how, for the component-

spectrum labelled PMMA in Figure 7a, by applying the peak model in Figure 3, optimisation returns 

the expected stoichiometry of PMMA defined by Figure 1. The hypothesis for modelling the 

spectrum in Figure 3 is therefore, that the peak model in Figure 3 requires additional components, 

which might take the form of the peak model shown in Figure 7b. These additional components in 

Figure 7b are accounting for degradation of PMMA, which was not considered when the peak model 

in Figure 3 was conceived. 
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(a)      (b) 

  

(c)      (d) 

 

Figure 6. Examples of two subsets of C 1s spectra from data shown in Figure 5 used to investigate 

component-spectra for PMMA and degraded PMMA. Spectra in (a) are a subset measured during 

iterations 6 to 38. Spectra in (c) are a subset measured during iterations 48 to 89. Abstract-spectra 

computed from the spectra in (a) and (c) are presented in (b) and (d), respectively. 

Linear Least Square Optimisation 

The peak models using mathematical components in Figure 7a are fitted to data using nonlinear 

optimisation. These two component spectra shown in Figure 7a are calculated from the data in 

Figure 5. The spectrum in Figure 7b is the same data shown in Figure 3, but in Figure 7b, the 

components are added to these C 1s data by fitting the component-spectra in Figure 7a to the 

spectrum in Figure 7b using linear least square optimisation. Since the fit of these two component-

spectra to the data in Figure 7b scales the intensity of these two component-spectra in Figure 7a, it 

is a simple matter to scale the components to each peak model in Figure 7a and add these scaled 

components to form the peak model shown in Figure 7b. No nonlinear optimisation is directly 
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applied to fit these eight components to the data in Figure 7b. Consequently, there is no need to 

alter the optimisation parameter constraints used to fit the two peak models separately to the two 

component-spectra in Figure 7a. 

 

  

(a)      (b) 

Figure 7. (a) Component-spectra calculated from data shown in Figure 6, fitted with two peak 

models, one using components correlated with photoemission from pure PMMA and the second 

fitted using four uncorrelated components corresponding to degraded PMMA. (b) As-received surface 

of PMMA sample measured by XPS fitted with a peak model constructed from the components 

shown in (a). Construction steps include forming a linear least square fit of the two component 

spectra in (a) to the data in Figure 3. The peak models applied to component-spectra in (a) are scaled 

and applied to the data in (b), resulting in a peak model involving eight component peaks, four of 

which are positively assigned as PMMA photoemission. 

The mathematics of linear least square optimisation is included in the Appendix. A further example 

of a spectrum fitted by linear least square optimisation is included in Figure A1. The same fitting 

procedure used to construct the fit to data shown in Figure A1, is used to fit the data in Figure 7b. 

The scale factors computed for the spectrum in Figure 7b, allow two peak models shown in Figure 

7a, fitted to the  𝑓1(𝑥) and 𝑓2(𝑥) as defined in Figure A1, to be transferred to the spectrum in Figure 

7b. The fit is therefore achieved without the use of nonlinear optimisation adjusting the peak model 

formed from these eight components. That is, linear least square fitting of component-spectra 

allows the construction of the peak model containing eight components shown in Figure 7b without 

the need for additional constraints between these eight components. 
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Appendix 

Mathematical Line Shapes 

The underlying functional forms used to construct mathematical line shapes are Lorentzian (Eq. A1) 

and Gaussian (Eq. A2). New line shapes are formed from these two functional forms Eq. A1 and Eq. 

A2, in the case of Eq. A5 by means of the convolution defined in Eq. A4. 

𝐿𝑜𝑟𝑒𝑛𝑡𝑧𝑖𝑎𝑛: 𝑙(𝑥) =
1

1+4𝑥2        (A1) 

𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛: 𝑔(𝑥) = 𝑒−4𝑙𝑛2𝑥2
        (A2) 

Voigt line shapes are defined from Lorentzian and Gaussian functions via the special case of a 

generalized Lorentzian (Eq. A3) and the convolution integral in Eq. A4  

𝐺𝑒𝑛𝑒𝑟𝑎𝑙𝑖𝑠𝑒𝑑 𝐿𝑜𝑟𝑒𝑛𝑡𝑧𝑖𝑎𝑛: 𝑙𝑔(𝑥: 𝛼, 𝛽) = {
[(𝑙(𝑥)]𝛼 𝑥 ≤ 0

[𝑙(𝑥)]𝛽 𝑥 > 0
    (A3) 

𝐿𝑖𝑛𝑒𝑠ℎ𝑎𝑝𝑒: 𝐿𝐴(𝑥: 𝛼, 𝛽, 𝑛) = 𝑁 ∫ 𝑙𝑔(𝜏: 𝛼, 𝛽)𝑔(𝑥 − 𝜏: 𝑓𝐺(𝑛))𝑑𝜏
∞

−∞
   (A4) 

The symmetric line shape 𝐿𝐴(𝑥, 𝑚) (Eq. A5), specified in CasaXPS by the string LA(m), is constructed 

from the definition for 𝐿𝐴(𝑥: 𝛼, 𝛽, 𝑛) and the maximum allowed value 𝑛  (1401) defining the width 

for the Gaussian term in the LA convolution integral in Eq. A4. 

𝐿𝐴(𝑥, 𝑚) = 𝐿𝐴 (𝑥: 1,1, (1401 − (
𝑚

100
) 1401))      (A5) 

The Gaussian-Lorentzian product (GL(m)) pseudo-Voigt peak shape, Eq. A6, is formed from the 

product of Gaussian and Lorentzian functions (Eq. A2 and Eq. A1),  

 

   

𝐺𝐿(𝑥, 𝑚) = {

𝑙 (
𝑥

𝑓𝐿
) × 𝑔 (

𝑥

𝑓𝐺
)

𝑙(𝑥)
𝑔(𝑥)

…
…
…

 0 < 𝑚 < 100
𝑚 = 100

𝑚 = 0
      (A6) 

 

where the FWHM for each function, 𝑓𝐿and 𝑓𝐺, Eq. A6, vary according to the parameter, 𝑚 ∈ (0,100), 

as follows: 

𝑓𝐿
2 =

1
𝑚

100

  and 𝑓𝐺
2 =

1

1−
𝑚

100

. The m parameter in GL(m) therefore alters the relative FWHM of the 

Gaussian and Lorentzian functions (in an attempt) to simulate the behaviour of a true Voigt line 

shape. 

Linear Least Square Optimisation 

Given a set of 𝑚 linearly independent functions {𝑓1(𝑥), 𝑓2(𝑥), 𝑓3(𝑥), … , 𝑓𝑚(𝑥)} a function 𝑦(𝑥), 

centred at the origin, can be defined by Eq. A7. 
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𝑦(𝑥) = 𝑐1𝑓1(𝑥) + 𝑐2𝑓2(𝑥) + 𝑐3𝑓3(𝑥) + ⋯ + 𝑐𝑚𝑓𝑚(𝑥)     (A7) 

Where, 𝑐1, 𝑐2, 𝑐3, … , 𝑐𝑚 are coefficients that may be chosen during optimisation so that 𝑦(𝑥) 

reproduces (approximates) a function defined by spectral data. The function 𝑦(𝑥) is a linear 

combination of the functions {𝑓1(𝑥), 𝑓2(𝑥), 𝑓3(𝑥), … , 𝑓𝑚(𝑥)}. If we use the vector notation, in 

spectroscopic terms these functional forms are intensities measured at a set of energies 

{𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛}, then component-spectra are written as a vector in the form 𝒗𝒋 =

(𝑓𝑗(𝑥1), 𝑓𝑗(𝑥2), 𝑓𝑗(𝑥3), … , 𝑓𝑗(𝑥𝑛)) and spectra, with intensity in data bin 𝑖 with energy 𝑥𝑖 defined by 

𝑑(𝑥𝑖) , yields a vector  𝒅 = (𝑑(𝑥1), 𝑑(𝑥2), 𝑑(𝑥3), … , 𝑑(𝑥𝑛)). Given the vectors 𝒗𝒋, a matrix can be 

defined in terms of these component-spectra in the form of vectors 𝑨 = [𝒗𝟏, 𝒗𝟐, 𝒗𝟑, … , 𝒗𝒎]. Linear 

algebra now provides the necessary means to compute 𝑦(𝑥) that best fits the data vector 𝒅 as 

follows. 

𝒄 = (𝑨𝑇𝑨)−1𝑨𝑇𝒅         (A8), 

Where 𝒄 = (𝑐1, 𝑐2, 𝑐3, … , 𝑐𝑚) are the coefficients in A7. An example of a spectrum from Figure 

5 fitted with the two component-spectra in Figure 7, is used to illustrate the result of 

constructing Eq. A7 making use of two functions  𝑓1(𝑥) and 𝑓2(𝑥), then computing two 

coefficients in Eq. A7, through Eq. A8, resulting in a fit of 𝑓1(𝑥) and 𝑓2(𝑥) to the spectrum.  

 

Figure A1. An example of a fit of two component-spectra to a spectrum from the data set shown in 

Figure 5. The component-spectra are labelled 𝑓1(𝑥) and 𝑓2(𝑥), but correspond to spectra assigned to 

degraded PMMA and PMMA, respectively. The relationship depicted in this figure is the linear least 

square fit of these two component-spectra to data formulated using Eq. A7 and calculated using 

equation A8, subject to nonnegative constraints for the coordinate of the vector 𝒄. 
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Videos 
Five videos that illustrate the software features used to construct the results presented above. To 

start mp4 videos, left-click on the image of the video. 

XPS of PMMA: Introduction 

 

The relationship between a peak model, constructed from mathematically defined component 

peaks, and chemistry of a sample is illustrated using the XPS of PMMA (Figure 1). 

Peak Models and the Need for Constraints 

 

The importance and influence of constraints to optimisation parameters are illustrated in 

this video. Relational constraints are added to four components forming a peak model for 

XPS-of-PMMA-Part1.mp4
NeedForConstraints-PMMA-Part2.mp4
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PMMA that illustrate how these types of constraints are used to improve the correlation 

between component parameters and chemical state information for carbon in PMMA. 

Iterations of Spectra from PMMA 

 

In this video, the experiment consisting of iterations of C 1s, O 1s and valence band spectra 

are reviewed and display options used to construct Figure 5 are illustrated. 

Constructing Component-Spectra 

 

C 1s Data in Figure 5 are processed within this video, the result of which are two 

component-spectra representing degraded PMMA and PMMA. These component-spectra 

are illustrated in Figure 7. 

XPS-of-PMMA-Part3.mp4
XPS-of-PMMA-Part4.mp4
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Constructing Peak Models using Component-Spectra 

 

The peak model shown in Figure 7b is constructed from the two peak models in Figure 7a. 
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